This is a java program to solve TSP using MST.
Here is the source code of the Java Program to Solve TSP Using Minimum Spanning Trees. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.sanfoundry.hardgraph;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class TSPUsingMST
{
// Arrays to keep track of info. related to each city
private String[] cityName;
private String[] cityState;
private int[] cityLat;
private int[] cityLong;
private int[] cityPop;
// 2-D array to keep track of pairwise distances between cities
private int[][] distances;
// number of cities
private static int numCities;
public TSPUsingMST(int n)
{
numCities = n;
// Allotting the space for each 1-D array
cityName = new String[numCities];
cityState = new String[numCities];
cityLat = new int[numCities];
cityLong = new int[numCities];
cityPop = new int[numCities];
// Allocate space for each 2-D array. These arrays have 0 elements in
// row 0,
// 1 element in row 1, 2 elements in row 2, etc.
distances = new int[numCities][];
for (int i = 0; i < numCities; i++)
distances[i] = new int[i];
try
{
// Construct a buffered reader object and connect it to the files
// "miles.dat"
BufferedReader in = new BufferedReader(new FileReader("miles.dat"));
// A counter that keeps track of the index of the current city being
// read
int cityNumber = 0;
// While-loop for reading in data from "miles.dat." At the beginning
// of the while-loop
// the expectation is that we'll be reading a line containing the
// city name. Instead,
// if we encounter a line that starts with "*" then we skip to the
// next line
while (cityNumber < numCities)
{
// Read in a line
String line = in.readLine();
// Skip the rest of the loop if line starts with a "*"
if (line.charAt(0) == '*')
continue;
// Otherwise tokenize the line
StringTokenizer tokenizedLine = new StringTokenizer(line, ",[]");
// Putting actual data into correct position in the array
cityName[cityNumber] = tokenizedLine.nextToken();
cityState[cityNumber] = (tokenizedLine.nextToken()).trim(); // trim()
// gets
// rid
// of
// leading/trailing
// blanks
cityLat[cityNumber] = Integer.parseInt(tokenizedLine
.nextToken());
cityLong[cityNumber] = Integer.parseInt(tokenizedLine
.nextToken());
cityPop[cityNumber] = Integer.parseInt(tokenizedLine
.nextToken());
// while loop to put distances in the array; this may need to
// read several lines
int mileNumber = 0;
while (mileNumber < cityNumber)
{
// Read a mileage line and tokenize it
String mileage = in.readLine();
StringTokenizer tokenizedMileage = new StringTokenizer(
mileage, " ");
// Read all the mileage data in this line into row
// cityNumber; increment
// mileNumber after each read
while (tokenizedMileage.hasMoreTokens())
{
distances[cityNumber][cityNumber - mileNumber - 1] = Integer
.parseInt(tokenizedMileage.nextToken());
mileNumber++;
}
} // end of while reading distances
cityNumber++;
} // end of while reading cities
in.close();
} // end of try
catch (IOException e)
{
System.out.println("File not found.");
}
} // end of TSPTester() constructor
// A simple getIndex method to help test the constructor
int getIndex(String city, String state)
{
int location;
for (location = 0; location < numCities; location++)
if ((cityName[location].equals(city))
&& (cityState[location].equals(state)))
return location;
return -1;
}
// Print information about a city, given a city index
void printCityInfo(int index)
{
System.out
.println(cityName[index] + " " + cityState[index] + " "
+ cityLat[index] + " " + cityLong[index] + " "
+ cityPop[index]);
}
// Print distance information between a given pair of cities
void printDistanceInfo(int i, int j)
{
if (i < j)
System.out.println(distances[j][i]);
else
System.out.println(distances[i][j]);
}
int getDistance(int i, int j)
{
if (i < j)
return distances[j][i];
else if (j < i)
return distances[i][j];
else
return 0;
}
int[] greedyTSP()
{
// Find a cheapest triangle
// Load triangle 0-1-2 into the the first 3 slots of the greedy array
int[] greedy = new int[numCities];
int currentDistance;
greedy[0] = 0;
greedy[1] = 1;
greedy[2] = 2;
int currentBestDistance = getDistance(0, 1) + getDistance(1, 2)
+ getDistance(2, 0);
for (int i = 0; i < numCities; i++)
for (int j = 0; j < i; j++)
for (int k = 0; k < j; k++)
if ((currentDistance = getDistance(i, j)
+ getDistance(j, k) + getDistance(i, k)) < currentBestDistance)
{
greedy[0] = i;
greedy[1] = j;
greedy[2] = k;
currentBestDistance = currentDistance;
}
// Try greedily to add a city that yields the smallest increase
// in the cost of the tour
int partialTourSize = 3;
boolean[] visited = new boolean[numCities];
for (int i = 0; i < numCities; i++)
visited[i] = false;
visited[greedy[0]] = true;
visited[greedy[1]] = true;
visited[greedy[2]] = true;
// Main loop: keep repeating until partial tour covers all cities
while (partialTourSize < numCities)
{
int smallestIncrease = Integer.MAX_VALUE;
int increase = 0;
int bestInsertionPoint = 0;
int bestCity = 0;
// Scan through all cities, stopping at unvisited cities
for (int i = 0; i < numCities; i++)
{
if (!visited[i])
{
// Consider all possible positions of inserting city i into
// the tour
// and record the smallest increase
for (int j = 0; j < partialTourSize; j++)
{
increase = getDistance(greedy[j], i)
+ getDistance(i, greedy[(j + 1) % numCities])
- getDistance(greedy[j], greedy[(j + 1)
% numCities]);
if (increase < smallestIncrease)
{
smallestIncrease = increase;
bestCity = i;
bestInsertionPoint = j;
} // end of if we have found a smaller increase
} // end of for-j
} // end of if not visited
} // end of for-i
// Now we are ready to insert the bestCity at the bestInsertionPoint
for (int j = partialTourSize - 1; j > bestInsertionPoint; j--)
greedy[j + 1] = greedy[j];
greedy[bestInsertionPoint + 1] = bestCity;
visited[bestCity] = true;
partialTourSize++;
} // end-while
return greedy;
}
void copy(int[] source, int[] dest)
{
for (int i = 0; i < dest.length; i++)
dest[i] = source[i];
}
void TSP(int[] R, int partialTourSize, boolean[] visited, int[] T)
{
// Base case: we have discovered a tour better than T
if ((partialTourSize == numCities) && (cost(R) < cost(T)))
{
System.out.println("Base case. Tour cost is " + cost(R));
copy(R, T);
return;
}
// Another base case: our partial tour is not worth completing
if (cost(R, partialTourSize) >= cost(T))
return;
// Recursive case: R is not complete and is currently better than T
// and is therefore worth completing
for (int i = 0; i < numCities; i++)
{
if (!visited[i])
{
// System.out.println("Appending " + i);
visited[i] = true;
R[partialTourSize++] = i;
TSP(R, partialTourSize, visited, T);
partialTourSize--;
visited[i] = false;
// System.out.println("Deleting " + i);
}
} // end of for-loop
} // end of TSP
double cost(int[] tour)
{
return cost(tour, tour.length);
}
double cost(int[] tour, int tourSize)
{
double c = 0;
for (int i = 0; i < tourSize - 1; i++)
c = c + getDistance(tour[i], tour[i + 1]);
c = c + getDistance(tour[tourSize - 1], tour[0]);
return c;
}
// Main method
public static void main(String[] args)
{
int n = 15;
TSPUsingMST T = new TSPUsingMST(n);
// Initialize the list of vertices in the tree
// Initially, no one except vertex 0 is in the tree
boolean[] visited = new boolean[n];
for (int i = 0; i < n; i++)
visited[i] = false;
visited[0] = true;
// Initialize the int[] that maintains the tree to default values
// No vertices have parents set, except vertex 0 whose parent is itself
int[] tree = new int[n];
for (int i = 0; i < n; i++)
tree[i] = -1;
tree[0] = 0;
for (int i = 1; i <= n - 1; i++)
{
long minWeight = Long.MAX_VALUE;
int bestVertex = -1;
int bestParent = -1;
for (int j = 0; j < n; j++)
{
for (int k = 0; k < n; k++)
{
if ((visited[j]) && (!visited[k]))
{
if (T.getDistance(j, k) < minWeight)
{
minWeight = T.getDistance(j, k);
bestVertex = k;
bestParent = j;
} // end if better distance is found
} // end if an edge between a visited and an unvisited is
// found
} // end for-k
} // end for-j
// Update visited and tree
visited[bestVertex] = true;
tree[bestVertex] = bestParent;
} // end for-i
// Printing the MST
for (int i = 1; i < n; i++)
System.out.println(T.cityName[i] + " " + T.cityState[i] + ", "
+ T.cityName[tree[i]] + " " + T.cityState[tree[i]]);
// Compting the MST cost
long cost = 0;
for (int i = 0; i < n; i++)
cost += T.getDistance(i, tree[i]);
System.out.println("The cost of the minimum spanning tree is " + cost);
} // end main method
} // end class
Output:
$ javac TSPUsingMST.java $ java TSPUsingMST Yankton SD, Wisconsin Dells WI Yakima WA, Williston ND Worcester MA, Wilmington DE Wisconsin Dells WI, Youngstown OH Winston-Salem NC, Winchester VA Winnipeg MB, Yankton SD Winchester VA, Wilmington DE Wilmington NC, Winston-Salem NC Wilmington DE, Williamsport PA Williston ND, Winnipeg MB Williamsport PA, Youngstown OH Williamson WV, Winston-Salem NC Wichita Falls TX, Wichita KS Wichita KS, Yankton SD The cost of the minimum spanning tree is 5461
Sanfoundry Global Education & Learning Series – 1000 Java Programs.
advertisement
advertisement
Here’s the list of Best Books in Java Programming, Data Structures and Algorithms.
Related Posts:
- Practice Programming MCQs
- Apply for Java Internship
- Check Programming Books
- Practice Information Technology MCQs
- Practice BCA MCQs