This is a java program to check if topological sorting can be performed on graph or not. Topological sort exists only if there is not cycle in directed graph. In short this problem can be reduced to check if the given graph is Directed Acyclic Graph. If it is topological sort can be performed, not otherwise.
Here is the source code of the Java Program to Check Whether Topological Sorting can be Performed in a Graph. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
package com.sanfoundry.graph;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
class GraphLinkedList
{
private Map<Integer, List<Integer>> adjacencyList;
public GraphLinkedList(int v)
{
adjacencyList = new HashMap<Integer, List<Integer>>();
for (int i = 1; i <= v; i++)
adjacencyList.put(i, new LinkedList<Integer>());
}
public void setEdge(int from, int to)
{
if (to > adjacencyList.size() || from > adjacencyList.size())
System.out.println("The vertices does not exists");
/*
* List<Integer> sls = adjacencyList.get(to);
* sls.add(from);
*/
List<Integer> dls = adjacencyList.get(from);
dls.add(to);
}
public List<Integer> getEdge(int to)
{
if (to > adjacencyList.size())
{
System.out.println("The vertices does not exists");
return null;
}
return adjacencyList.get(to);
}
public boolean checkDAG()
{
Integer count = 0;
Iterator<Integer> iteratorI = this.adjacencyList.keySet().iterator();
Integer size = this.adjacencyList.size() - 1;
while (iteratorI.hasNext())
{
Integer i = iteratorI.next();
List<Integer> adjList = this.adjacencyList.get(i);
if (count == size)
{
return true;
}
if (adjList.size() == 0)
{
count++;
System.out.println("Target Node - " + i);
Iterator<Integer> iteratorJ = this.adjacencyList.keySet()
.iterator();
while (iteratorJ.hasNext())
{
Integer j = iteratorJ.next();
List<Integer> li = this.adjacencyList.get(j);
if (li.contains(i))
{
li.remove(i);
System.out.println("Deleting edge between target node "
+ i + " - " + j + " ");
}
}
this.adjacencyList.remove(i);
iteratorI = this.adjacencyList.keySet().iterator();
}
}
return false;
}
public void printGraph()
{
System.out.println("The Graph is: ");
for (int i = 1; i <= this.adjacencyList.size(); i++)
{
List<Integer> edgeList = this.getEdge(i);
if (edgeList.size() != 0)
{
System.out.print(i);
for (int j = 0; j < edgeList.size(); j++)
{
System.out.print(" -> " + edgeList.get(j));
}
System.out.println();
}
}
}
}
public class TopologicalSortPossible
{
public static void main(String args[])
{
int v, e, count = 1, to, from;
Scanner sc = new Scanner(System.in);
GraphLinkedList glist;
try
{
System.out.println("Enter the number of vertices: ");
v = sc.nextInt();
System.out.println("Enter the number of edges: ");
e = sc.nextInt();
glist = new GraphLinkedList(v);
System.out.println("Enter the edges in the graph : <from> <to>");
while (count <= e)
{
to = sc.nextInt();
from = sc.nextInt();
glist.setEdge(to, from);
count++;
}
glist.printGraph();
System.out
.println("--Processing graph to check whether it is DAG--");
if (glist.checkDAG())
{
System.out
.println("Result: \nGiven graph is DAG (Directed Acyclic Graph).");
}
else
{
System.out
.println("Result: \nGiven graph is not DAG (Directed Acyclic Graph).");
}
}
catch (Exception E)
{
System.out
.println("You are trying to access empty adjacency list of a node.");
}
sc.close();
}
}
Output:
$ javac TopologicalSortPossible.java $ java TopologicalSortPossible Enter the number of vertices: 6 Enter the number of edges: 7 Enter the edges in the graph : <from> <to> 1 2 2 3 2 4 4 5 5 6 6 1 6 3 The Graph is: 1 -> 2 2 -> 3 -> 4 4 -> 5 5 -> 6 6 -> 1 -> 3 --Processing graph to check whether it is DAG-- Target Node - 3 Deleting edge between target node 3 - 2 Deleting edge between target node 3 - 6 Result: Given graph is not DAG (Directed Acyclic Graph). Enter the number of vertices: 6 Enter the number of edges: 7 Enter the edges in the graph : <from> <to> 1 2 2 3 2 4 4 5 4 6 5 6 6 3 The Graph is: 1 -> 2 2 -> 3 -> 4 4 -> 5 -> 6 5 -> 6 6 -> 3 --Processing graph to check whether it is DAG-- Target Node - 3 Deleting edge between target node 3 - 2 Deleting edge between target node 3 - 6 Target Node - 6 Deleting edge between target node 6 - 4 Deleting edge between target node 6 - 5 Target Node - 5 Deleting edge between target node 5 - 4 Target Node - 4 Deleting edge between target node 4 - 2 Target Node - 2 Deleting edge between target node 2 - 1 Result: Given graph is DAG (Directed Acyclic Graph).
Sanfoundry Global Education & Learning Series – 1000 Java Programs.
advertisement
advertisement
Here’s the list of Best Books in Java Programming, Data Structures and Algorithms.
Related Posts:
- Practice Information Technology MCQs
- Check Java Books
- Apply for Computer Science Internship
- Apply for Java Internship
- Practice Programming MCQs