Rocket Propulsion Questions and Answers – Flight Performance – Basic Relations of Motion

This set of Rocket Propulsion Multiple Choice Questions & Answers (MCQs) focuses on “Flight Performance – Basic Relations of Motion”.

1. Which of the following can be non-zero for an airborne vehicle moving in rectilinear equilibrium flight?
a) Control forces
b) Lateral forces
c) Moments
d) Thrust
View Answer

Answer: d
Explanation: Control forces, Lateral forces and moments are taken to be zero to ensure that the vehicle doesn’t turn or slip in flight. However, the vehicle may need thrust to propel forward.

2. What is the trajectory of an airborne vehicle in rectilinear equilibrium flight?
a) One-dimensional
b) Two-dimensional
c) Three-dimensional
d) Four-dimensional
View Answer

Answer: b
Explanation: The trajectory for such a vehicle is considered to be two-dimensional and contained within a plane. In real cases, the flight is much more complex and three-dimensional and requires computational usage for the trajectory analysis.

3. The angle at which the wings of the vehicle are inclined to the flight path is called as __________
a) angle of attack
b) flight path angle
c) pitch angle
d) roll angle
View Answer

Answer: a
Explanation: The vehicle wings are at some angle with the flight path. This angle is called the angle of attack. It plays a significant role in determining the lift generated under atmospheric conditions in the vehicle.
advertisement
advertisement

4. Lift is generated __________ to the flight path for an airborne vehicle in rectilinear equilibrium flight.
a) parallel
b) perpendicular
c) at an acute angle
d) at an obtuse angle
View Answer

Answer: b
Explanation: Lift generation is normal to the direction of the flight path for such a vehicle. Lift is normal to the relative wind, while drag acts parallel to it and in the opposite direction.

5. In the direction of the flight path, the product of mass and acceleration of the vehicle is not the sum of which of the following forces?
a) Propulsive
b) Aerodynamic
c) Gravitational
d) Electromagnetic
View Answer

Answer: d
Explanation: Propulsive, aerodynamic and gravitational forces are the major forces that contribute to the flight of an airborne vehicle. Propulsive forces include the thrust produced by the vehicle’s engine, while the aerodynamic forces include lift and drag forces.
Sanfoundry Certification Contest of the Month is Live. 100+ Subjects. Participate Now!

6. Which of the following is acceleration perpendicular to the flight path?
a) udθ/dt
b) θdu/dt
c) d(uθ)/dt
d) d(u/θ)/dt
View Answer

Answer: a
Explanation: udθ/dt is the correct representation of the acceleration perpendicular to the flight path. du/dt is the acceleration in the direction of the flight path. It has a contribution from the lift, propulsive forces, and the gravitational forces.

7. Determine the acceleration perpendicular to flight path for constant value of flight speed u = 100 m/s and instantaneous radius R = 200 m.
a) 100 m/s2
b) 50 m/s2
c) 200 m/s2
d) 125 m/s2
View Answer

Answer: b
Explanation: Required acceleration perpendicular to flight path is atan = u2/R.
atan = 1002/200 = 50 m/s2.
advertisement

8. Determine the component of gravitational force in the direction of the flight path if the angle of the flight path with the horizontal is 30°, angle of direction of thrust with the horizontal is 20° and mass of the vehicle is 300 kg. Assume the acceleration due to gravity to be 9.8 m/s2.
a) 2250 N
b) 2980 N
c) 1470 N
d) 3343 N
View Answer

Answer: c
Explanation: Required component of gravitational force = mgsinθ.
Fgrav comp = 300 x 9.8 x sin(30) = 1470 N.

9. For a propulsive force of 1500 N, determine the magnitude of its component in a direction normal to the flight velocity if the angle of flight path with the horizontal is 30° and the angle of direction of thrust with the horizontal is 10°. Assume g=9.8 m/s2.
a) 513 N
b) 1026 N
c) 279 N
d) 813 N
View Answer

Answer: a
Explanation: The required propulsive force component is Tprop = F x sin(ψ-θ), where F is the total propulsive force, ψ is the angle of direction of thrust with the horizontal and θ is the angle of the flight path with the horizontal.
Tprop = 1500 x sin(10-30) = 513 N in magnitude.
advertisement

10. If the flight is not following a vertical path, then the gravity losses are a function of the angle between the flight direction and the local horizontal.
a) True
b) False
View Answer

Answer: a
Explanation: If the flight is not along a vertical path, then there is a component of gravitational force on the vehicle that tries to slow it down. For an angle θ between the flight direction and the local horizontal, this force component is mgsinθ and it acts towards the center of the earth.

Sanfoundry Global Education & Learning Series – Rocket Propulsion.

To practice all areas of Rocket Propulsion, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.