This set of Numerical Analysis Multiple Choice Questions & Answers (MCQs) focuses on “Gauss’s Backward Interpolation Formula”.
1. What will be the solution for the following table using Gauss’s backward interpolation formula, where x = 3?
x | f(x) |
1 | 1 |
2 | 2 |
3 | 1 |
a) 1
b) 0.328
c) 0.327
d) 0.322
View Answer
Explanation:
Gauss's backward difference interpolation method to find solution
h=2-1=1
Now the central difference table is
x | p=(x-2)/1 | y | Δy | Δ2y |
1 | -1 | 1 | ||
1 | ||||
2 | 0 | 2 | -2 | |
-1 | ||||
3 | 1 | 1 |
Solution of Gauss's backward interpolation is y(3)=1.
2. What will be the solution for the following table using Gauss’s backward interpolation formula, where x = 3?
x | f(x) |
1 | 2 |
2 | 3 |
3 | 4 |
a) 0.2452
b) 0.2864
c) 0.2862
d) 4
View Answer
Explanation:
Gauss's backward method to find solution
h=2-1=1
Now the central difference table is
x | p=(x-2)/1 | y | Δy | Δ2y |
1 | -1 | 2 | ||
1 | ||||
2 | 0 | 3 | 0 | |
1 | ||||
3 | 1 | 4 |
Solution of Gauss's backward interpolation is y(3)=4.
3. What will be the solution for the following table using Gauss’s backward interpolation formula, where x = 3?
x | f(x) |
1 | 2 |
2 | 3 |
3 | 4 |
4 | 8 |
a) 11.152
b) 4
c) 11.122
d) 11.128
View Answer
Explanation: Given,
Gauss's backward method to find solution
h=2-1=1
Now the central difference table is
x | p=(x-2)/1 | y | Δy | Δ2y | Δ3y |
1 | -1 | 2 | |||
1 | |||||
2 | 0 | 3 | 0 | ||
1 | 3 | ||||
3 | 1 | 4 | 3 | ||
4 | |||||
4 | 2 | 8 |
Solution of Gauss's backward interpolation is y(3)=4.
4. What will be the solution for the following table using Gauss’s backward interpolation formula, where x = 3?
x | f(x) |
1 | 2 |
2 | 6 |
3 | 4 |
4 | 8 |
5 | 10 |
6 | 12 |
a) 1
b) 4.1774
c) 4
d) 2
View Answer
Explanation:
Gauss's backward difference interpolation method to find solution
h=2-1=1
Now the central difference table is
x | p=(x-3)/1 | y | Δy | Δ2y | Δ3y | Δ4y | Δ5y |
1 | -2 | 2 | |||||
1 | |||||||
2 | -1 | 3 | 0 | ||||
1 | 3 | ||||||
3 | 0 | 4 | 3 | -8 | |||
4 | -5 | 15 | |||||
4 | 1 | 8 | -2 | 7 | |||
2 | 2 | ||||||
5 | 2 | 10 | 0 | ||||
2 | |||||||
6 | 3 | 12 |
Solution of Gauss's backward interpolation is y(3)=4.
5. What will be the solution for the following table using Gauss’s backward interpolation formula, where x = 3?
x | f(x) |
1 | 2 |
2 | 6 |
3 | 4 |
4 | 8 |
5 | 10 |
6 | 12 |
7 | 24 |
8 | 26 |
9 | 28 |
a) 4
b) 9
c) 7
d) 6
View Answer
Explanation:
Gauss's backward method to find solution
h=2-1=1
Now the central difference table is
x | p=(x-5)/1 | y | Δy | Δ2y | Δ3y | Δ4y | Δ5y | Δ6y | Δ7y | Δ8y |
1 | -4 | 2 | ||||||||
1 | ||||||||||
2 | -3 | 3 | 0 | |||||||
1 | 3 | |||||||||
3 | -2 | 4 | 3 | -8 | ||||||
4 | -5 | 15 | ||||||||
4 | -1 | 8 | -2 | 7 | -14 | |||||
2 | 2 | 1 | -25 | |||||||
5 | 0 | 10 | 0 | 8 | -39 | 162 | ||||
2 | 10 | -38 | 137 | |||||||
6 | 1 | 12 | 10 | -30 | 98 | |||||
12 | -20 | 60 | ||||||||
7 | 2 | 24 | -10 | 30 | ||||||
2 | 10 | |||||||||
8 | 3 | 26 | 0 | |||||||
2 | ||||||||||
9 | 4 | 28 |
Solution of Gauss's backward interpolation is y(3)=4.
6. What will be the solution of the equation 4x-1 using Gauss’s backward interpolation formula where x1 = 2 and x2 = 4 and x = 2.1, step value (h) = 0.25?
a) 8.4
b) 7.4
c) 8
d) 5
View Answer
Explanation:
Gauss's backward method to find solution
h=2.25-2=0.25
Now the central difference table is
x | p=(x-3)/0.25 | y | Δy | Δ2y |
2 | -4 | 7 | ||
1 | ||||
2.25 | -3 | 8 | 0 | |
1 | ||||
2.5 | -2 | 9 | 0 | |
1 | ||||
2.75 | -1 | 10 | 0 | |
1 | ||||
3 | 0 | 11 | 0 | |
1 | ||||
3.25 | 1 | 12 | 0 | |
1 | ||||
3.5 | 2 | 13 | 0 | |
1 | ||||
3.75 | 3 | 14 | 0 | |
1 | ||||
4 | 4 | 15 |
Solution of Gauss's backward interpolation is y(2.1)=7.4.
7. What will be the solution of the equation -2x2 using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 2 & step value (h) = 0.25?
a) 2
b) 7
c) 5
d) -8
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y | Δ3y | |
1 | -2 | -2 | ||||
-1.125 | ||||||
1.25 | -1 | -3.125 | -0.25 | |||
-1.375 | 0 | |||||
1.5 | 0 | -4.5 | -0.25 | |||
-1.625 | 0 | |||||
1.75 | 1 | -6.125 | -0.25 | |||
-1.875 | ||||||
2 | 2 | -8 |
Solution of Gauss's backward interpolation is y(2)=-8.
8. What will be the solution of the equation 3x using Gauss’s backward interpolation formula, where x1 = 2 and x2 = 4 & x = 2 & step value (h) = 0.25?
a) 8
b) -6
c) 5
d) 1
View Answer
Explanation:
Gauss's backward method to find solution
h=2.25-2=0.25
Now the central difference table is
x | p=(x-3)/0.25 | y | Δy | Δ2y |
2 | -4 | -6 | ||
-0.75 | ||||
2.25 | -3 | -6.75 | 0 | |
-0.75 | ||||
2.5 | -2 | -7.5 | 0 | |
-0.75 | ||||
2.75 | -1 | -8.25 | 0 | |
-0.75 | ||||
3 | 0 | -9 | 0 | |
-0.75 | ||||
3.25 | 1 | -9.75 | 0 | |
-0.75 | ||||
3.5 | 2 | -10.5 | 0 | |
-0.75 | ||||
3.75 | 3 | -11.25 | 0 | |
-0.75 | ||||
4 | 4 | -12 |
Solution of Gauss's backward interpolation is y(2)=-6.
9. What will be the solution of the equation x – 1 using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 1 & step value (h) = 0.25?
a) 1
b) 3
c) 0
d) 4
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y |
1 | -2 | 0 | ||
0.25 | ||||
1.25 | -1 | 0.25 | 0 | |
0.25 | ||||
1.5 | 0 | 0.5 | 0 | |
0.25 | ||||
1.75 | 1 | 0.75 | 0 | |
0.25 | ||||
2 | 2 | 1 |
Solution of Gauss's backward interpolation is y(1)=0.
10. What will be the solution of the equation -x using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 1 & step value (h) = 0.25?
a) 4
b) 2
c) 3
d) 1
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y |
1 | -2 | -1 | ||
-0.25 | ||||
1.25 | -1 | -1.25 | 0 | |
-0.25 | ||||
1.5 | 0 | -1.5 | 0 | |
-0.25 | ||||
1.75 | 1 | -1.75 | 0 | |
-0.25 | ||||
2 | 2 | -2 |
Solution of Gauss's backward interpolation is y(1)=-1.
11. What will be the solution of the equation -sin(x) using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 1 & step value (h) = 0.25?
a) 4
b) 2
c) 3
d) -0.8415
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y |
1 | -2 | -0.8415 | ||||
-0.1075 | ||||||
1.25 | -1 | -0.949 | 0.059 | |||
-0.0485 | 0.003 | |||||
1.5 | 0 | -0.9975 | 0.062 | -0.0039 | ||
0.0135 | -0.0008 | |||||
1.75 | 1 | -0.984 | 0.0612 | |||
0.0747 | ||||||
2 | 2 | -0.9093 |
Solution of Gauss's backward interpolation is y(1)=-0.8415.
12. What will be the solution of the equation -cos(x) using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 1 & step value (h) = 0.25?
a) -0.5403
b) 2
c) 3
d) 0.0167
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y |
1 | -2 | -0.5403 | ||||
0.225 | ||||||
1.25 | -1 | -0.3153 | 0.0196 | |||
0.2446 | -0.0152 | |||||
1.5 | 0 | -0.0707 | 0.0044 | -0.0003 | ||
0.249 | -0.0155 | |||||
1.75 | 1 | 0.1782 | -0.0111 | |||
0.2379 | ||||||
2 | 2 | 0.4161 |
Solution of Gauss's backward interpolation is y(1)=-0.5403.
13. What will be the solution of the equation -tan(x) using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 1 & step value (h) = 0.25?
a) 0.9496
b) -1.5574
c) 3
d) 0.0167
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y |
1 | -2 | -1.5574 | ||||
-1.4522 | ||||||
1.25 | -1 | -3.0096 | -9.6397 | |||
-11.0919 | 40.3533 | |||||
1.5 | 0 | -14.1014 | 30.7137 | -94.0241 | ||
19.6218 | -53.6708 | |||||
1.75 | 1 | 5.5204 | -22.9571 | |||
-3.3353 | ||||||
2 | 2 | 2.185 |
Solution of Gauss's backward interpolation is y(1)=-1.5574.
14. What will be the solution of the equation cot(x) using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 1 & step value (h) = 0.25?
a) 0.9496
b) 4190.0569
c) -0.6421
d) 0.0167
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y |
1 | -2 | -0.6421 | ||||
0.3098 | ||||||
1.25 | -1 | -0.3323 | -0.0485 | |||
0.2614 | 0.0392 | |||||
1.5 | 0 | -0.0709 | -0.0093 | -0.0054 | ||
0.2521 | 0.0337 | |||||
1.75 | 1 | 0.1811 | 0.0244 | |||
0.2765 | ||||||
2 | 2 | 0.4577 |
Solution of Gauss's backward interpolation is y(1)=-0.6421.
15. What will be the solution of the equation -sec(x) using Gauss’s backward interpolation formula, where x1 = 1 and x2 = 2 & x = 1 & step value (h) = 0.25?
a) -1.8508
b) 4190.0569
c) 3.3389
d) 0.0167
View Answer
Explanation:
Gauss's backward method to find solution
h=1.25-1=0.25
Now the central difference table is
x | p=(x-1.5)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y |
1 | -2 | -1.8508 | ||||
-1.3205 | ||||||
1.25 | -1 | -3.1714 | -9.6449 | |||
-10.9655 | 40.3575 | |||||
1.5 | 0 | -14.1368 | 30.7125 | -94.0243 | ||
19.7471 | -53.6668 | |||||
1.75 | 1 | 5.6102 | -22.9543 | |||
-3.2072 | ||||||
2 | 2 | 2.403 |
Solution of Gauss's backward interpolation is y(1)=-1.8508.
Sanfoundry Global Education & Learning Series – Numerical Analysis.
To practice all areas of Numerical Analysis, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Apply for 1st Year Engineering Internship
- Practice Engineering Mathematics MCQ
- Check Numerical Methods Books
- Practice Probability and Statistics MCQ