This set of Numerical Analysis Multiple Choice Questions & Answers (MCQs) focuses on “Bessel’s Formula”.
1. What will be the solution of the table using Bessel’s formula?
x | f(x) |
22 | 2854 |
24 | 3162 |
26 | 3544 |
28 | 3992 |
x = 25
a) 3344.25
b) 3344
c) 3444.50
d) 3374.75
View Answer
Explanation:
Bessel's method to find solution
h=24-22=2
Taking x0=24 then p=(x-x0)/h=(x-24)/2
The difference table is
x | p=(x-24)/2 | y | Δy | Δ2y | Δ3y |
22 | -1 | 2854 | |||
308 | |||||
24 | 0 | 3162 | 74 | ||
382 | -8 | ||||
26 | 1 | 3544 | 66 | ||
448 | |||||
28 | 2 | 3992 |
x=25
p=(x-x0)/h=(25-24)/2=0.5
y0=3162, Δy0=382, Δ2y-1 = 74, Δ3y-1 = -8
Applying Bessel’s formula,
y0.5 =(3162+3544)/2+(0.5-(1/2))⋅(382)+0.5(0.5-1)/2⋅(74+66)/2+(0.5-1/2)0.5(0.5-1)/6⋅(-8)
y0.5 =3353+0-8.75+0
y0.5 =3344.25
Solution of Bessel's interpolation is y(25)=3344.25.
2. What will be the solution of the table using Bessel’s formula?
x | f(x) |
20 | 24 |
24 | 32 |
26 | 35 |
22 | 40 |
x = 25
a) 0.619
b) 0.611
c) 0.614
d) Solution not possible
View Answer
Explanation: Given,
The value of table for x and y
x | 20 | 24 | 26 | 22 |
y | 24 | 32 | 35 | 40 |
Here difference of x is not same. So, solution using Bessel's method is not possible.
3. What will be the solution of the equation 2x3 +1 using Bessel's formula where x1 = 2 and x2 = 4 and x = 2.1 and step value (h) = 0.25?
a) 11.522
b) 19.522
c) 14.522
d) 29.522
View Answer
Explanation: Given,
Equation is f(x)=2x3 + 1
Bessel's method to find solution
h=2.25-2=0.25
Taking x0=3 then p=(x-x0)/h=(x-3)/0.25
The difference table is
x | p=(x-3)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y |
2 | -4 | 17 | ||||
6.7812 | ||||||
2.25 | -3 | 23.7812 | 1.6875 | |||
8.4688 | 0.1875 | |||||
2.5 | -2 | 32.25 | 1.875 | 0 | ||
10.3438 | 0.1875 | |||||
2.75 | -1 | 42.5938 | 2.0625 | 0 | ||
12.4062 | 0.1875 | |||||
3 | 0 | 55 | 2.25 | 0 | ||
14.6562 | 0.1875 | |||||
3.25 | 1 | 69.6562 | 2.4375 | 0 | ||
17.0938 | 0.1875 | |||||
3.5 | 2 | 86.75 | 2.625 | 0 | ||
19.7188 | 0.1875 | |||||
3.75 | 3 | 106.4688 | 2.8125 | |||
22.5312 | ||||||
4 | 4 | 129 |
x=2.1
p=(x-x0)/h=(2.1-3)/0.25=-3.6
y0=55, Δy0=14.6562, Δ2y-1 = 2.25, Δ3y-1 = 0.1875, Δ4y-2 = 0
Applying Bessel’s formula,
y-3.6 = (55+69.6562)/2+(-3.6-(1/2))⋅(14.6562)+-3.6(-3.6-1)/2⋅(2.25+2.4375)/2+(-3.6-(1/2))(-3.6)(-3.6-
1)/6⋅(0.1875)+(-3.6+1)(-3.6)(-3.6-1)(-3.6-2)/24⋅(0)/2
y-3.6 = 62.3281-60.090625+19.40625-2.12175+0
y-3.6 = 19.522
Solution of Bessel's interpolation is y(2.1)=19.522.
4. What will be the solution of the equation 3x+1 using Bessel's formula where x1 = 2 and x2 = 4 and x = 2.1 and step value (h) = 0.25?
a) 4.6
b) 2.5
c) 7.3
d) 1.9
View Answer
Explanation: Given,
Equation is f(x)=3x+1
Bessel's method to find solution
h=2.25-2=0.25
Taking x0=3 then p=(x-x0)/h=(x-3)/0.25
The difference table is
x | p=(x-3)/0.25 | y | Δy | Δ2y |
2 | -4 | 7 | ||
0.75 | ||||
2.25 | -3 | 7.75 | 0 | |
0.75 | ||||
2.5 | -2 | 8.5 | 0 | |
0.75 | ||||
2.75 | -1 | 9.25 | 0 | |
0.75 | ||||
3 | 0 | 10 | 0 | |
0.75 | ||||
3.25 | 1 | 10.75 | 0 | |
0.75 | ||||
3.5 | 2 | 11.5 | 0 | |
0.75 | ||||
3.75 | 3 | 12.25 | 0 | |
0.75 | ||||
4 | 4 | 13 |
x=2.1
p=(x-x0)/h=(2.1-3)/0.25=-3.6
y0=10, Δy0=0.75, Δ2y-1 = 0
Bessel's formula is
y-3.6 =(10+10.75)/2+(-3.6-(1/2))⋅(0.75)+(-3.6)(-3.6-1)/2⋅(0)/2
y-3.6 =10.375-3.075+0
y-3.6 =7.3
Solution of Bessel's interpolation is y(2.1)=7.3.
5. What will be the solution of the equation x using Bessel's formula where x1 = 2 and x2 = 4 and
x = 2.1 and step value (h) = 0.25?
a) 1
b) 2.1
c) 2
d) 1.2
View Answer
Explanation: Given,
Equation is f(x)=x
Bessel's method to find solution
h=2.25-2=0.25
Taking x0=3 then p=(x-x0)/h=(x-3)/0.25
The difference table is
x | p=(x-3)/0.25 | y | Δy | Δ2y |
2 | -4 | 2 | ||
0.25 | ||||
2.25 | -3 | 2.25 | 0 | |
0.25 | ||||
2.5 | -2 | 2.5 | 0 | |
0.25 | ||||
2.75 | -1 | 2.75 | 0 | |
0.25 | ||||
3 | 0 | 3 | 0 | |
0.25 | ||||
3.25 | 1 | 3.25 | 0 | |
0.25 | ||||
3.5 | 2 | 3.5 | 0 | |
0.25 | ||||
3.75 | 3 | 3.75 | 0 | |
0.25 | ||||
4 | 4 | 4 |
x=2.1
p=(x-x0)/h=(2.1-3)/0.25=-3.6
y0=3, Δy0=0.25, Δ2y-1 =0
Bessel's formula is
y-3.6 = (3+3.25)/2+(-3.6-(1/2))⋅(0.25)+(-3.6)(-3.6-1)/2⋅(0)/2
y-3.6 = 3.125-1.025+0
y-3.6 = 2.1
Solution of Bessel's interpolation is y(2.1)=2.1.
6. What will be the solution of the equation log(x) using Bessel's formula where x1 = 2 and x2 = 4 and x = 2.1 and step value (h) = 0.25?
a) 1.3799
b) 1.3791
c) 1.3794
d) -0.5045
View Answer
Explanation: Given,
Equation is f(x)=log(x)
Bessel's method to find solution
h=2.25-2=0.25
Taking x0=3 then p=(x-x0)/h=(x-3)/0.25
The difference table is
x | p=(x-3)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y | Δ5y |
2 | -4 | 0.301 | |||||
0.0512 | |||||||
2.25 | -3 | 0.3522 | -0.0054 | ||||
0.0458 | 0.001 | ||||||
2.5 | -2 | 0.3979 | -0.0044 | -0.0003 | |||
0.0414 | 0.0008 | 0.0001 | |||||
2.75 | -1 | 0.4393 | -0.0036 | -0.0002 | |||
0.0378 | 0.0006 | 0.0001 | |||||
3 | 0 | 0.4771 | -0.003 | -0.0001 | |||
0.0348 | 0.0004 | 0 | |||||
3.25 | 1 | 0.5119 | -0.0026 | 0 | |||
0.0322 | 0.0004 | 0 | |||||
3.5 | 2 | 0.5441 | -0.0022 | 0 | |||
0.03 | 0.0003 | ||||||
3.75 | 3 | 0.574 | -0.0019 | ||||
0.028 | |||||||
4 | 4 | 0.6021 |
p=(x-x0)/h=-3/0.25=-12
y0=0.4771, Δy0=0.0348, Δ2y-1 = -0.003, Δ3y-1 = 0.0004, Δ4y-2 = -0.0001, Δ5y-2 = 0
Bessel's formula is
y-12 = (0.4771+0.5119)/2+(-12-(1/2))⋅(0.0348)+(-12(-12-1))/2⋅(-0.003-0.0026)/2+(-12-(1/2))-12(-12-
1)/6⋅(0.0004)+(-12+1)-12(-12-1)(-12-2)/24⋅(-0.0001)/2+(-12-(1/2))(-12+1)-12(-12-1)(-12-2)/120⋅(0)
y-12 = 0.4945-0.4345263282-0.2185512232-0.1459353163-0.1109642258-0.089011542
y-12 = -0.5045
Solution of Bessel's interpolation is y()=-0.5045.
7. What will be the root of the equation cos(x) using Bessel's formula where x1 = 2 and x2 = 4 and
x = 2.1 and step value (h) = 0.25?
a) 1.2045
b) 2.2354
c) 3.8547
d) 4.6235
View Answer
Explanation: Given,
Equation is f(x)=cos(x)
Bessel's method to find solution
h=2.25-2=0.25
Taking x0=3 then p=(x-x0)/h=(x-3)/0.25
The difference table is
x | p=(x-3)/0.25 | y | Δy | Δ2y | Δ3y | Δ4y | Δ5y | Δ6y | Δ7y |
2 | -4 | -0.4161 | |||||||
-0.212 | |||||||||
2.25 | -3 | -0.6282 | 0.0391 | ||||||
-0.173 | 0.0108 | ||||||||
2.5 | -2 | -0.8011 | 0.0498 | -0.0031 | |||||
-0.1232 | 0.0077 | -0.0005 | |||||||
2.75 | -1 | -0.9243 | 0.0575 | -0.0036 | 0.0002 | ||||
-0.0657 | 0.0041 | -0.0003 | 0 | ||||||
3 | 0 | -0.99 | 0.0616 | -0.0038 | 0.0002 | ||||
-0.0041 | 0.0003 | 0 | 0 | ||||||
3.25 | 1 | -0.9941 | 0.0618 | -0.0038 | 0.0002 | ||||
0.0577 | -0.0036 | 0.0002 | |||||||
3.5 | 2 | -0.9365 | 0.0582 | -0.0036 | |||||
0.1159 | -0.0072 | ||||||||
3.75 | 3 | -0.8206 | 0.051 | ||||||
0.1669 | |||||||||
4 | 4 | -0.6536 |
p=(x-x0)/h=-3/0.25=-12
y0=-0.99, Δy0=-0.0041, Δ2y-1 = 0.0616, Δ3y-1 = 0.0003, Δ4y-2 = -0.0038, Δ5y-2 = 0, Δ6y-3 = 0.0002, Δ7y-3 = 0
Bessel's formula is
y-12 = (-0.99±0.9941)/2+(-12-(1/2))⋅(-0.0041)+(-12(-12-1))/2⋅(0.0616+0.0618)/2+(-12-(1/2))-12(-12-1)/6⋅(0.0003)+(-12+1)(-12)(-12-1)(-12-2)/24⋅(-0.0038-0.0038)/2+(-12-(1/2))(-12+1)(-12)(-12-1)(-12-2)/120⋅(0)+(-12+1)(-12+1)(-12)(-12-1)(-12-2)(-12-2)/720⋅(0.0002)/2+(-12-(1/2))(-12+1)(-12+1)(-12)(-12-1)(-12-2)(-12-2)/5040⋅(0)
y-12 = -0.9921+0.0517147435+4.8111611636-0.0835996791-3.8388952996+0.0400232382+1.2252441039-0.0091243207
y-12 = 1.2045
Solution of Bessel's interpolation is y()=1.2045.
8. What will be the solution of the table using Bessel’s formula?
x | f(x) |
10 | 0.1 |
20 | 2.1 |
30 | 3.4 |
40 | 4.5 |
x = 25
a) 2.8062
b) 4.2563
c) 1.2354
d) -0.2396
View Answer
Explanation:
Bessel's method to find solution
h = 20-10 = 10
Taking x0 = 20 then p = (x-x0)/h = (x-20)/10
The difference table is
x | p=(x-20)/10 | y | Δy | Δ2y | Δ3y |
10 | -1 | 0.1 | |||
2 | |||||
20 | 0 | 2.1 | -0.7 | ||
1.3 | 0.5 | ||||
30 | 1 | 3.4 | -0.2 | ||
1.1 | |||||
40 | 2 | 4.5 |
x=25
p = (x-x0)/h = (25-20)/10 = 0.5
y0 = 2.1 ,Δy0 = 1.3, Δ2y-1 = -0.7, Δ3y-1 = 0.5
Bessel's formula is
y0.5 = (2.1+3.4)/2+(0.5-(1/2))⋅(1.3)+0.5(0.5-1)/2⋅(-0.7-0.2)/2+(0.5-(1/2))0.5(0.5-1)/6⋅(0.5)
y0.5 = 2.75+0+0.05625+0
y0.5 = 2.8062
Solution of Bessel's interpolation is y(25)=2.8062.
9. What will be the solution of the table using Bessel’s formula?
x | f(x) |
10 | 0.1 |
20 | 2.1 |
30 | 3.4 |
40 | 4.5 |
50 | 5.6 |
x = 15
a) 1.9874
b) 1.3254
c) 1.2589
d) 1.2715
View Answer
Explanation:
Bessel's method to find solution
h = 20-10 = 10
Taking x0=30 then p=(x-x0)/h=(x-30)/10
The difference table is
x | p=(x-30)/10 | y | Δy | Δ2y | Δ3y | Δ4y |
10 | -2 | 0.1 | ||||
2 | ||||||
20 | -1 | 2.1 | -0.7 | |||
1.3 | 0.5 | |||||
30 | 0 | 3.4 | -0.2 | -0.3 | ||
1.1 | 0.2 | |||||
40 | 1 | 4.5 | 0 | |||
1.1 | ||||||
50 | 2 | 5.6 |
x = 15
p = (x-x0)/h = (15-30)/10 = -1.5
y0 = 3.4, Δy0 = 1.1, Δ2y-1 = -0.2, Δ3y-1 = 0.2, Δ4y-2 = -0.3
Bessel's formula is
y-1.5 = (3.4+4.5)/2+(-1.5-(1/2))⋅(1.1)+(-1.5(-1.5-1))/2⋅(-0.2)/2+(-1.5-(1/2))(-1.5)(-1.5-1)/6⋅(0.2)+(-1.5+1)(-1.5)(-1.5-1)(-1.5-2)/24⋅(-0.3)/2
y-1.5 = 3.95-2.2-0.1875-0.25-0.041015625
y-1.5 = 1.2715
Solution of Bessel's interpolation is y(15) = 1.2715.
10. What will be the root of the equation x+1 using Bessel's formula where x1 = 4 and x2 = 6 and
x = 2.1 and step value (h) = 0.50?
a) 3.1
b) 1.62
c) 2
d) 2.56
View Answer
Explanation: Given,
Equation is f(x)=x+1
The value of table for x and y
x | 4 | 4.5 | 5 | 5.5 | 6 |
y | 5 | 5.5 | 6 | 6.5 | 7 |
Bessel's method to find solution
h = 4.5-4 = 0.5
Taking x0 = 5 then p = (x-x0)/h = (x-5)/0.5
The difference table is
x | p=(x-5)/0.5 | y | Δy | Δ2y |
4 | -2 | 5 | ||
0.5 | ||||
4.5 | -1 | 5.5 | 0 | |
0.5 | ||||
5 | 0 | 6 | 0 | |
0.5 | ||||
5.5 | 1 | 6.5 | 0 | |
0.5 | ||||
6 | 2 | 7 |
x = 2.1
p = (x-x0)/h = (2.1-5)/0.5 = -5.8
y0 = 6, Δy0 = 0.5, Δ2y-1 = 0
Bessel's formula is
y-5.8 = (6+6.5)/2+(-5.8-(1/2))⋅(0.5)+(-5.8(-5.8-1))/2⋅(0)/2
y-5.8 = 6.25-3.15+0
y-5.8 = 3.1
Solution of Bessel's interpolation is y(2.1)=3.1.
Sanfoundry Global Education & Learning Series – Numerical Analysis.
To practice all areas of Numerical Analysis, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Check Numerical Methods Books
- Practice Probability and Statistics MCQ
- Practice Engineering Mathematics MCQ
- Apply for 1st Year Engineering Internship