# Matrix Inversion Questions and Answers – Cramer’s Rule

«
»

This set of Numerical Methods Multiple Choice Questions & Answers (MCQs) focuses on “Cramer’s Rule”.

1. Cramer’s Rule fails for ___________
a) Determinant > 0
b) Determinant < 0
c) Determinant = 0
d) Determinant = non-real

Explanation: This is because Cramer’s rule involves division by determinant which should never be equal to 0 leading to not defined numbers.

2. Cramer’s Rule is not suitable for which type of problems?
a) Small systems with 4 unknowns
b) Systems with 2 unknowns
c) Large systems
d) Systems with 3 unknowns

Explanation: Generally, in large systems, excessive multiplicative operations are required which becomes very cumbersome to solve.

3. Apply Cramer’s rule to solve the following equations.

3x + y + 2z = 3
2x – 3y –z = -3
X +2y +z = 4

a) X = 1, y = 2, z = -1
b) X = 2, y = 1, z = -1
c) X = 2, y = -1, z = 1
d) X = 1, y = -1, z = 2

Explanation:
∆ = $$\begin{pmatrix}3&1&2\\2&-3&-1\\1&2&1\end{pmatrix}$$ = 8

X = (1/∆)$$\begin{pmatrix}3&1&2\\-3&-3&-1\\4&2&1\end{pmatrix}$$ = (1/8)8 = 1

Y = (1/∆)$$\begin{pmatrix}3&3&2\\2&-3&-1\\1&4&1\end{pmatrix}$$ = (1/8)16 = 2

Z = (1/∆)$$\begin{pmatrix}3&1&3\\2&-3&-3\\1&2&4\end{pmatrix}$$ = (1/8)(-8) = -1

Hence, x = 1, y = 2, z = -1.

4. Apply Cramer’s rule to solve the following equations.

x + 3y + 6z = 2
3x – y + z = 9
X – 4y + 2z = 7

a) X = 1, y = 2, z = -1
b) X = 2, y = – 1, z = -0.5
c) X = 1, y = 2, z = -0.5
d) X = 2, y = 2, z = -1

Explanation:
∆ = $$\begin{pmatrix}1&3&6\\3&-1&4\\1&-4&2\end{pmatrix}$$ = -58

X = (1/∆) = $$\begin{pmatrix}2&3&6\\9&-1&4\\7&-4&2\end{pmatrix}$$ = -116/-58 = 2

Y = (1/∆) = $$\begin{pmatrix}1&2&6\\3&9&4\\1&7&2\end{pmatrix}$$ = 58/-58 = -1

Z = (1/∆) = $$\begin{pmatrix}1&3&2\\3&-1&9\\1&-4&7\end{pmatrix}$$ = -29/-58 = 0.5

Hence, x = 2, y = -1, z = -0.5.

5. Apply Cramer’s rule to solve the following equations.

x + y + z = 6.6
x – y + z = 2.2
x + 2y + 3z = 15.2

a) x = 1.5, y = 2.2, z = -0.5
b) x = 1.5, y = 2.2, z = -0.5
c) x = 1.2, y = 2, z = 3.2
d) x = 1.2, y = 2.2, z = -3.2

Explanation:
∆ = $$\begin{pmatrix}1&1&1\\1&-1&1\\1&2&3\end{pmatrix}$$ = -4

X = (1/∆) = $$\begin{pmatrix}6.6&1&1\\2.2&-1&1\\15.2&2&3\end{pmatrix}$$ = -4.8/-4 = 1.2

Y = (1/∆) = $$\begin{pmatrix}1&6.6&1\\1&2.2&1\\1&15.2&3\end{pmatrix}$$ = -8.8/-4 = 2.2

Z = (1/∆) = $$\begin{pmatrix}1&1&6.6\\1&-1&2.2\\1&2&15.2\end{pmatrix}$$ = -12.8/-4 = 3.2

Hence, x = 1.2, y = 2.2, z = 3.2.

6. Apply Cramer’s rule to solve the following equations.

x + y + z =3
x + 2y + 3z = 4
x + 4y + 9z = 1

a) x = -0.5, y = 6, z = -2.5
b) x = -0.5, y = 4, z = -2.5
c) x = 4.5, y = 6, z = 1
d) x = 4.5, y = 6, z = 2

Explanation:
∆ = $$\begin{pmatrix}1&1&1\\1&2&3\\1&4&9\end{pmatrix}$$ = 2

X = (1/∆) = $$\begin{pmatrix}3&1&1\\4&2&3\\1&4&9\end{pmatrix}$$ = -0.5

Y = (1/∆) = $$\begin{pmatrix}1&3&1\\1&4&3\\1&1&9\end{pmatrix}$$ = 6

Z = (1/∆) = $$\begin{pmatrix}1&1&3\\1&2&4\\1&4&1\end{pmatrix}$$ = -2.5

Hence, X = -0.5, y = 6, z = -2.5.

7. Apply Cramer’s rule to solve the following equations.

2x – y + z = 3
3x + 2y + 4z = 19
6x + 7y – z = 17

a) X = 0.456, y = 1.5442, z = 3.154
b) X = 0.437, y = 1.5312, z = 3.656
c) X = 0.356, y =2.547, z = 5.474
d) X = 0.356, y = 1.722, z = 9.424

Explanation:
∆ = $$\begin{pmatrix}2&-1&1\\3&4&3\\6&7&1\end{pmatrix}$$ = -64

x = (1/∆) = $$\begin{pmatrix}3&-1&1\\19&4&3\\17&7&1\end{pmatrix}$$ = -28/-64 = 0.437

y = (1/∆) = $$\begin{pmatrix}2&3&1\\3&19&3\\6&17&1\end{pmatrix}$$ = -98/-64 = 1.5312

z = (1/∆) = $$\begin{pmatrix}2&-1&3\\3&4&19\\6&7&17\end{pmatrix}$$ = -234/-64 = 3.656

Hence, X = 0.437, y = 1.5312, z = 3.656.

8. Apply Cramer’s rule to solve the following equations.

3x + y + z = 8
2x – 3y -2z = -5
7x + 2y – 5z = 0

a) X = 1, y =4, z = 2.5
b) X = 4.562, y =4, z = 3.1
c) X = 0.2179, y =1, z = 2.5
d) X = 4.2, y =4, z = 3.145

Explanation:
∆ = $$\begin{pmatrix}3&1&1\\2&-3&-2\\7&2&-5\end{pmatrix}$$ = 78

x = (1/∆) = $$\begin{pmatrix}8&1&1\\-5&-3&-2\\0&2&-5\end{pmatrix}$$ = 117/78 = 0.2179

y = (1/∆) = $$\begin{pmatrix}3&8&1\\2&-5&-2\\7&0&-5\end{pmatrix}$$ = 78/78 = 1

z = (1/∆) = $$\begin{pmatrix}3&1&8\\2&-3&-5\\7&2&5\end{pmatrix}$$ = 195/78 = 2.5

Hence, X = 0.2179, y =1, z = 2.5.

9. Apply Cramer’s rule to solve the following equations.

2x + y + z = 10
3x + 2y + 3z = 18
X + 4y +9z = 16

a) X = -9, y = 1, z = 5
b) X = 7, y = -9, z = 5
c) X = 7, y = 1, z = 5
d) X = 9, y = 1, z = 3

Explanation:
∆ = $$\begin{pmatrix}2&1&1\\3&2&3\\1&4&9\end{pmatrix}$$ = -2

x = (1/∆) = $$\begin{pmatrix}10&1&1\\18&2&3\\16&4&9\end{pmatrix}$$ = -14/-2 = 7

y = (1/∆) = $$\begin{pmatrix}2&10&1\\3&18&3\\1&16&9\end{pmatrix}$$ = 18/-2 = -9

z = (1/∆) = $$\begin{pmatrix}2&1&10\\3&2&18\\1&4&16\end{pmatrix}$$ = -10/-2 = 5

Hence, X = 7, y = -9, z = 5.

10. Apply Cramer’s rule to solve the following equations.

2x – y + 3z = 9
x + y + z = 6
x – y + z = 2

a) x = 1, y = 2, z = 3
b) x = 2, y = 2, z = 3
c) x = 2, y = 3, z = 7
d) x = 1, y = 3, z = 8

Explanation: ∆ = $$\begin{pmatrix}2&-1&3\\1&1&1\\1&-1&1\end{pmatrix}$$ = -2

x = (1/∆) = $$\begin{pmatrix}9&-1&3\\6&1&1\\2&-1&1\end{pmatrix}$$ = -2/-2 = 1

y = (1/∆) = $$\begin{pmatrix}2&9&3\\1&6&1\\1&2&1\end{pmatrix}$$ = -4/-2 = 2

z = (1/∆) = $$\begin{pmatrix}2&-1&9\\1&1&6\\1&-1&2\end{pmatrix}$$ = -6/-2 = 3

Hence, X = 1, y = 2, z = 3.

Sanfoundry Global Education & Learning Series – Numerical Methods.

To practice all areas of Numerical Methods, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs! 