This set of Mathematics Exam Questions and Answers for Class 9 focuses on “Parallel Lines and Transversal – 4”.
1. Find the value of k in line l || m?
a) 90°
b) 83°
c) 132°
d) 41°
View Answer
Explanation: line l || m

From figure, ∠1 = ∠(2x + 15) (Vertically Opposite Angles)
∠1 + ∠(3x – 40) = 180° (Sum of Interior Angles on the same side of transversal is 180°, l || m)
⇒ 2x + 15 + 3x – 40 = 180°
⇒ 5x = 180° + 25°
⇒ 5x = 205°
⇒ x = 41°
Now, ∠k = ∠(3x – 40) = 75° (Alternate Interior Angles)
⇒ k = 3 x 41° – 40°
⇒ k = 83°
2. Find the value of ∠1 and ∠2 if line p || q and ∠1 = 5x – 26°, ∠2 = 2x + 10° .
a) 90°, 90°
b) 45°, 90°
c) 41°, 41°
d) 44°, 34°
View Answer
Explanation:

∠1 = ∠3 (Vertically Opposite Angles)
⇒ ∠3 = 5x – 26°
Also, ∠2 = ∠3 (Corresponding Angles, p || q)
⇒ 2x + 10° = 5x – 26°
⇒ 3x = 36°
⇒ x = 12°
∠1 = 5x – 26° = 5 x 12 – 26 = 44°
and ∠2 = 2x + 10° = 2 x 12 + 10 = 34°
3. What will be the values of x and y if line AB || CD?
a) 60°, 70°
b) 75°, 75°
c) 70°, 60°
d) 60°, 120°
View Answer
Explanation:

Since line AB || CD , ∠(2x – y) = 60° (Vertically Opposite Angles)
⇒ 2x – y = 60° ——- (i)
Also, ∠(x + y) + 50° = 180° (Sum of Interior Angles on the same side of transversal is 180°)
⇒ x + y = 130° ——- (ii)
Adding equation (i) and (ii),
2x – y + x + y = 60° + 130°
⇒ 3x = 180°
⇒ x = 60°
Substituting value of x in equation (ii),
60° + y = 130°
⇒ y = 70°
4. Find the value of ∠CAB if PQ || RS and AB ⊥ RS.
a) 60°
b) 75°
c) 45°
d) 80°
View Answer
Explanation:

AB ⊥ RS ⇒ ∠ABC = 90°
Since line PQ || RS and AB is transversal, ∠QAB = ∠ABC = 90° (Alternate Interior Angles)
Since line PQ || RS and AC is transversal, ∠RCA = ∠QAC = 135° (Alternate Interior Angles)
Now, ∠CAB = ∠QAC – ∠QAB
⇒ ∠CAB = 135° – 90°
⇒ ∠CAB = 45°
5. Find the value of y if AB || CD.
a) 60°
b) 80°
c) 132°
d) 280°
View Answer
Explanation: Draw a line POQ parallel to AB and CD

Since line PQ || AB and OB is transversal, ∠ABO = ∠BOQ = 120° (Alternate Interior Angles)
Since line PQ || CD and OC is transversal,
∠OCD + ∠COQ = 180° (Sum of Interior Angles on the same side of transversal is 180°)
⇒ ∠COQ = 180° – 140°
⇒ ∠COQ = 40°
Now, ∠BOC = ∠BOQ – ∠COQ
⇒ ∠BOC = 120° – 40°
⇒ ∠BOC = 80°
Now, y = 360° – ∠BOC (Sum of Angles around a point is 360°)
⇒ y = 360° – 80°
⇒ y = 280°
6. Find the value of x if BF || DE, AB ⊥ BF and ∠BAC : ∠ACB = 2 : 3.
a) 70°
b) 126°
c) 110°
d) 80°
View Answer
Explanation: Since AB ⊥ BF, ∠ABC = 90°
∠BAC : ∠ACB = 2 : 3
⇒ ∠BAC = 2k, ∠ACB = 3k
In ⊿ABC,
∠ABC + ∠BAC + ∠ACB = 180° (Angle sum property of triangle)
⇒ 90° + 2k + 3k = 180°
⇒ 5k = 90°
⇒ k = 18°
∠BAC = 2 x 18 = 36°
and ∠ACB = 3 x 18 = 54°
Now, ∠ACB = ∠DCF (Vertically Opposite Angles)
⇒ ∠DCF = 54°
Since line ED || CF and CD is transversal,
∠DCF + ∠x = 180° (Sum of Interior Angles on the same side of transversal is 180°)
⇒ 54° + ∠x = 180°
⇒ ∠x = 126°
7. Find the value of y if PR || AC.
a) 10°
b) 25°
c) 265°
d) 120°
View Answer
Explanation: Draw Line XY parallel to AC and PR

Line PR || XY ⇒ ∠OQR = ∠QOX = 35° (Alternate Interior Angles)
Line XY || AC ⇒ ∠XOA + ∠ABO = 180° (Sum of Interior Angles on the same side of transversal)
⇒ ∠XOA + 120° = 180°
⇒ ∠XOA = 60°
Now, ∠QOX + ∠XOA + ∠QOB = 360° (Sum of Angles around a point is 360°)
⇒ 35° + 60° + y = 360°
⇒ y = 265°.
8. Find the value of x if PQ || RS, CD || RB, ∠1 : ∠2 = 3 : 4 and ∠2 = 64°.
a) 43°
b) 54°
c) 68°
d) 72°
View Answer
Explanation: ∠1 : ∠2 = 3 : 4
⇒ ∠1 = 3/4 x 64°
⇒ ∠1 = 48°
Line RB || CD ⇒ ∠DCR = ∠ARB (Corresponding Angles)
⇒ ∠DCR = 48°
Now, ∠DCP + ∠DCR + ∠RCQ = 180° (Linear Pair)
⇒ x + 48° + 64° = 180°
⇒ x = 68°
9. Find the value of k if line l || m || n.
a) 60°
b) 54°
c) 75°
d) 120°
View Answer
Explanation:

From figure, ∠1 = 120° (Vertically Opposite Angles)
Also, ∠1 + ∠2 = 180° (Sum of Interior Angles on the same side of transversal is 180°, Line l || m )
⇒ ∠2 + 120° = 180°
⇒ ∠2 = 60°
Now, ∠k = ∠2 (Corresponding Angles, Line m || n)
⇒ k = 60°
10. What is the value of (a + b) if Line l || m?
a) c
b) 90°
c) b + d
d) d
View Answer
Explanation:

From figure, ∠b = ∠d (Corresponding Angles, Line l || m and p is transversal)
∠1 = ∠a (Vertically Opposite Angles)
Also, ∠1 = ∠d (Corresponding Angles, Line l || m and p is transversal)
Hence, a + b = c + d.
11. Find the value of x and y if line AB || CD.
a) 60°, 75°
b) 90°, 90°
c) 36°, 63°
d) 36°, 144°
View Answer
Explanation: From Figure, ∠(2x) + ∠(y) = 180° (Linear Pair)
⇒ 2x + y = 180° ——- (i)
Since line AB||CD, ∠( y) = ∠(3x) (Alternate Interior Angles)
⇒ y = 3x
⇒ 3x – y = 0 ——- (ii)
Adding equation (i) and (ii),
2x + y + 3x – y = 180°
⇒ 5x = 180°
⇒ x = 36°
Substituting value of x in equation (ii),
3 x 36° – y =0
⇒ y = 144°.
Sanfoundry Global Education & Learning Series – Mathematics – Class 9.
To practice Mathematics Exam Questions and Answers for Class 9, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Practice Class 10 Mathematics MCQs
- Practice Class 8 Mathematics MCQs
- Buy Class 9 - Mathematics Books