Machine Kinematics Questions and Answers – Method of Locating Instantaneous Centres in a Mechanism

«
»

This set of Machine Kinematics Multiple Choice Questions & Answers (MCQs) focuses on “Method of Locating Instantaneous Centres in a Mechanism”.

1. The direction of Corioli’s component of acceleration is the direction
a) of relative velocity vector for the two coincident points rotated by 900 in the direction of the angular velocity of the rotation of the link
b) along the centripetal acceleration
c) along tangential acceleration
d) along perpendicular to angular velocity
View Answer

Answer: a
Explanation: The direction of coriolis component of acceleration will not be changed in sign if both ω and v are reversed in direction. It is concluded that the direction of coriolis component of acceleration is obtained by rotating v, at 90°, about its origin in the same direction as that of ω.
advertisement

2. In a shaper mechanism, the Corioli’s component of acceleration will
a) not exist
b) exist
c) depend on position of crank
d) none of the mentioned
View Answer

Answer: b
Explanation: None.

3. The magnitude of tangential acceleration is equal to
a) velocity2 x crank radius
b) velocity2/ crank radius
c) (velocity/ crank radius)2
d) velocity x crank radius2
View Answer

Answer: b
Explanation: The magnitude of tangential acceleration is equal to velocity2/ crank radius.
The magnitude of the Corioli’s component of acceleration of a slider moving at velocity V on a link rotating at angular speed ω is 2Vω.

4. Tangential acceleration direction is
a) along the angular velocity
b) opposite to angular velocity
c) perpendicular to angular velocity
d) all of the mentioned
View Answer

Answer: d
Explanation: None.

5. The magnitude of the Corioli’s component of acceleration of a slider moving at velocity V on a link rotating at angular speed ω is
a) Vω
b) 2Vω
c) Vω/2
d) 2V/ω
View Answer

Answer: b
Explanation: The magnitude of tangential acceleration is equal to velocity2/ crank radius.
The magnitude of the Corioli’s component of acceleration of a slider moving at velocity V on a link rotating at angular speed ω is 2Vω.
advertisement

6. In a rotary engine the angular velocity of the cylinder center line is 25 rad/sec and the relative velocity of a point on the cylinder center line w.r.t. cylinder is 10 m/sec. Corioli’s acceleration will be
a) 500m/sec2
b) 250m/sec2
c) 1000m/sec2
d) 2000m/sec2
View Answer

Answer: a
Explanation: Corioli’s component = 2Vω
= 2 x 10 x 25 = 500500m/sec2.

7. Corioli’s component is encountered in
a) quick return mechanism of shaper
b) four bar chain mechanism
c) slider crank mechanism
d) all of the mentioned
View Answer

Answer: a
Explanation: When a point on one link is sliding along another rotating link, such as in quick return motion mechanism, then the coriolis component of the acceleration must be calculated.

8. Klein’s construction gives a graphical construction for
a) slider-crank mechanism
b) velocity polygon
c) acceleration polygon
d) none of the mentioned
View Answer

Answer: c
Explanation: Klein’s construction represents acceleration polygon.

9. The velocity of a slider with reference to a fixed point about which a bar is rotating and slider sliding on the bar will be
a) parallel to bar
b) perpendicular to bar
c) both of the mentioned
d) none of the mentioned
View Answer

Answer: c
Explanation: None.
advertisement

10. Klien’s construction can be used to determine acceleration of various parts when the crank is at
a) inner dead center
b) outer dead center
c) right angles to the link of the stroke
d) all of the mentioned
View Answer

Answer: d
Explanation: Klien’s construction can be used to determine acceleration in all the mentioned position.

11. The number of dead centers in a crank driven slider crank mechanism are
a) 0
b) 2
c) 4
d) 6
View Answer

Answer: b
Explanation: None.

12. Corioli’s component acts
a) perpendicular to sliding surfaces
b) along sliding surfaces
c) both of the mentioned
d) all of the mentioned
View Answer

Answer: a
Explanation: The coriolis component of acceleration is always perpendicular to the link.

13. The sense of Coriol’s component is such that it
a) leads the sliding velocity vector by 900
b) lags the sliding velocity vector by 900
c) is along the sliding velocity vector by 900
d) leads the sliding velocity vector by 1800
View Answer

Answer: a
Explanation: The direction of coriolis component of acceleration is obtained by rotating v, at 90°, about its origin in the same direction as that of ω.
advertisement

14. Klien’s construction can be used when
a) crank has a uniform angular velocity
b) crank has non-uniform velocity
c) crank has uniform angular acceleration
d) crank has uniform angular velocity and angular acceleration
View Answer

Answer: a
Explanation: None.

15. Klein’s construction is useful to determine
a) velocity of various parts
b) acceleration of various parts
c) displacement of various parts
d) angular acceleration of various parts
View Answer

Answer: b
Explanation: Klien’s construction can be used to determine acceleration.

Sanfoundry Global Education & Learning Series – Machine Kinematics.
To practice all areas of Machine Kinematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
advertisement
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn