logo
  • Home
  • Rank
  • Tests
  • About
  • Training
  • Programming
  • CS
  • IT
  • IS
  • ECE
  • EEE
  • EE
  • Civil
  • Mechanical
  • Chemical
  • Metallurgy
  • Instrumentation
  • Aeronautical
  • Aerospace
  • Biotechnology
  • Agriculture
  • MCA
  • BCA
  • Internship
  • Contact

Linear Integrated Circuits Multiple Choice Questions | MCQs | Quiz

Linear Integrated Circuits Interview Questions and Answers
Practice Linear Integrated Circuits questions and answers for interviews, campus placements, online tests, aptitude tests, quizzes and competitive exams.

Get Started

•   Differential Amplifier
•   Op-Amp Internal Circuit - 1
•   Op-Amp Internal Circuit - 2
•   Op-Amp Internal Circuit - 3
•   Op-Amp Internal Circuit - 4
•   Integrated Circuits - 1
•   Integrated Circuits - 2
•   IC Chip Size & Circuit
•   Basic Planar Process - 1
•   Basic Planar Process - 2
•   Basic Planar Process - 3
•   Active & Passive IC - 1
•   Active & Passive IC - 2
•   Active & Passive IC - 3
•   Thin Film Technology
•   FET Fabrication
•   IC Package Type - 1
•   IC Package Type - 2
•   Data Sheets Interpreting - 1
•   Data Sheets Interpreting - 2
•   Ideal Operational Amplifier
•   Open Loop Op-Amp
•   Feedback Configurations
•   Voltage Series Amplifier - 1
•   Voltage Series Amplifier - 2
•   Voltage Shunt Amplifier
•   Multiple Op-Amp - 1
•   Multiple Op-Amp - 2
•   Input Offset Voltage - 1
•   Input Offset Voltage - 2
•   Input Offset Voltage - 3
•   Input Bias Current
•   Input Offset Current
•   Thermal Drift
•   Offset Voltage Effect
•   Noise
•   Rejection Ratio
•   Frequency Response
•   Non-Compensating Op-Amp
•   Open-Loop Voltage Gain-1
•   Open-Loop Voltage Gain-2
•   Circuit Stability
•   Slew Rate - 1
•   Slew Rate - 2
•   DC & AC Amplifiers
•   AC Amplifiers
•   Peaking Amplifier
•   Averaging Amplifier - 1
•   Averaging Amplifier - 2
•   Instrumentation Amplifier - 1
•   Instrumentation Amplifier - 2
•   Instrumentation Amplifier - 3
•   Op-Amp Equivalent Circuit
•   Voltage-Current Converter-1
•   Voltage-Current Converter-2
•   Current-Voltage Converter
•   Input Impedance Circuit
•   Log & Antilog Amplifier
•   Multiplier & Divider - 1
•   Multiplier & Divider - 2
•   Integrator - 1
•   Integrator - 2
•   Differentiator
•   Active Filters - 1
•   Active Filters - 2
•   1st Order Butterworth Filter
•   2nd Order Butterworth Filter
•   Higher Order Filters
•   Band Pass Filters
•   All Pass Filters
•   Sine Wave Oscillator - 1
•   Sine Wave Oscillator - 2
•   Sine Wave Oscillator - 3
•   Sine Wave Oscillator - 4
•   Square Wave Generator
•   Sawtooth Wave Generator
•   Comparator
•   Schmitt Trigger
•   Precision Type Comparator
•   Basic DAC Techniques - 1
•   Basic DAC Techniques - 2
•   A to D Converter - 1
•   A to D Converter - 2
•   DAC / ADC Specification
•   Clippers & Clampers
•   Peak Detector & Sampling
•   Monostable Multivibrator
•   Astable Multivibrator
•   Phase-Locked Loops
•   Phase Detector
•   Controlled Oscillator
•   PLL Applications
•   IC Voltage Regulator
•   Switching Regulator
•   Monolithic Phase Loop
•   Power Amplifiers

Best Reference Books

Linear Integrated Circuits Books
« Prev Page
Next Page »

Linear Integrated Circuit Questions and Answers – Basic Principles of Sine Wave Oscillator – 3

Posted on August 27, 2017 by staff10

This set of Linear Integrated Circuit Interview Questions and Answers focuses on “Basic Principles of Sine Wave Oscillator – 3”.

1. What is the frequency of oscillation of wein bridge oscillator?
a) fo = 1/(2πRC)
b) fo = 2π/RC
c) fo = RC/2π
d) fo = 2πRC
View Answer

Answer: a
Explanation: The frequency of oscillation of wein bridge oscillator is fo=2πRC.
advertisement

2. Sustained oscillation in wein bridge oscillator is possible when the value of ß is
a) 3
b) 1/3
c) 1
d) None of the mentioned
View Answer

Answer: b
Explanation: The gain |A|≥3, for oscillation to keep growing ( Since, |Aß|≥1 for sustained oscillation).

3. Determine the value of fo, ß and Rf from the following circuit diagram.
linear-integrated-circuits-interview-questions-answers-q3
a) fo = 80Hz, ß = 0.162 and Rf = 7kΩ
b) fo = 100Hz, ß = 1.62 and Rf = 7kΩ
c) fo = 60Hz, ß = 0.0162 and Rf = 7kΩ
d) fo = 120Hz, ß = 16.2 and Rf = 7kΩ
View Answer

Answer: c
Explanation: The frequency of oscillation for the circuit is given as,
fo = 1/(2π×√(R1R2C1C2))
= 1/(2π×√(2.7kΩ×5kΩ×0.1µF×6µF) = 1/(2π×2.85×10-3)
=> fo = 55.8 = 60Hz.
The value of ß = (R2C1) / (R1C1 + R2C2 + R2C1)
= (5kΩ×0.1µF)/(2.7kΩ×0.1µF+5kΩ×6µF+5kΩ×0.1µF)= 0.0162.
Rf =2 R3
=> Rf = 2×3.5kΩ=7kΩ.

4. What is the problem faced by the wein bridge oscillator?
a) Output sinewave get clipped
b) Output sinewave remain constant without growing
c) Output sinewave keep on decreasing and die out
d) All of the mentioned
View Answer

Answer: a
Explanation: The gain of wein bridge oscillator is greater than 3, sometimes this may keep the oscillations growing and it may clip the output sinewave.

5. Find the type of oscillator shown in the diagram
linear-integrated-circuits-interview-questions-answers-q5
a) Quadrature oscillator
b) Biphasic oscillator
c) RC phase shit oscillator
d) None of the mentioned
View Answer

Answer: d
Explanation: The circuit shown is the practical wein bridge oscillator with adaptive negative feedback.
advertisement

6. Calculate the value of capacitance in wein bridge oscillator, such that fo =1755Hz and R=3.3kΩ.
a) 2.7µF
b) 0.91µF
c) 0.03µF
d) 0.05µF
View Answer

Answer: c
Explanation: The frequency of oscillation is given as fo = 0.159/RC
=> C = 0.159/R×fo = 0.159/3.3kΩ×1755Hz
=> C = 0.027µF = 0.03µF.

7. Quadrature oscillators have signals with
a) Different frequency
b) Same frequency
c) Opposite frequency
d) Parallel frequency
View Answer

Answer: b
Explanation: In Quadrature oscillators, signals have same frequency but have phase shift with respective to each other.

8. Which of the following component is not used for audio frequency?
a) RC oscillator
b) Wein bridge oscillator
c) LC oscillator
d) None of the mentioned
View Answer

Answer: c
Explanation: RC and wein bridge oscillator are suitable for audio frequency range because of size of R and C components becomes very large for generating low frequencies.

9. Find the signal waveform for Quadrature oscillators?
a) linear-integrated-circuits-interview-questions-answers-q9a
b) linear-integrated-circuits-interview-questions-answers-q9b
c) linear-integrated-circuits-interview-questions-answers-q9c
d) All of the mentioned
View Answer

Answer: a
Explanation: Quadrature signals are the signals that are of same frequency but have a phase shift of 90o with respect to each other. The mentioned waveform have a phase shift of π/2- π=90o phase shift between sine waveform and cosine waveform.

10. If the resistor and capacitor values are same in Quadrature oscillator. Find its frequency of oscillation for R=50kΩ and C=0.01µF.
a) 112Hz
b) 275Hz
c) 159Hz
d) 318Hz
View Answer

Answer: d
Explanation: Frequency of Quadrature oscillator, fo = 1/(2πRC)
=> fo= 1/(2π×50kΩ×0.01µF)= 318Hz.
advertisement

11. What is the possible method used in Quadrature oscillator to remove distortion from the output waveform?
a) Replace the resistor at the input of non-inverting type amplifier with a potentiometer
b) Replace the resistor at the output of non-inverting type amplifier with a potentiometer
c) Replace the resistor at the input of inverting type amplifier with a potentiometer
d) None of the mentioned
View Answer

Answer: a
Explanation: The resistor at the input of non-inverting type amplifier is replaced with a potentiometer in order to eliminate any possible distortion in the output waveform.

Sanfoundry Global Education & Learning Series – Linear Integrated Circuits.

To practice all areas of Linear Integrated Circuit for Interviews, here is complete set of 1000+ Multiple Choice Questions and Answers.

« Prev Page - Linear Integrated Circuit Questions and Answers – Basic Principles of Sine Wave Oscillator – 2
» Next Page - Linear Integrated Circuit Questions and Answers – Basic Principles of Sine Wave Oscillator – 4

« Linear Integrated Circuit Questions and Answers – Basic Principles of Sine Wave Oscillator – 2
Linear Integrated Circuit Questions and Answers – Basic Principles of Sine Wave Oscillator – 4 »
advertisement

Deep Dive @ Sanfoundry:

  1. Electrical Measurements Questions and Answers
  2. Power Electronics Questions and Answers
  3. Electric Circuits Questions and Answers
  4. Electrical Engineering Questions and Answers
  5. Electronic Devices and Circuits Questions and Answers
  6. Basic Civil Engineering Questions and Answers
  7. Microwave Engineering Questions and Answers
  8. C# Basic Programming Examples
  9. Analog Circuits Questions and Answers
  10. Linear Integrated Circuits Questions and Answers
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer and SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage & Cluster Administration, Advanced C Programming, SAN Storage Technologies, SCSI Internals and Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him below:
LinkedIn | Facebook | Twitter | Google+

Best Careers

Developer Tracks
SAN Developer
Linux Kernel Developer
Linux Driver Developer
Linux Network Developer

Live Training Photos
Mentoring
Software Productivity
GDB Assignment
Sanfoundry is No. 1 choice for Deep Hands-ON Trainings in SAN, Linux & C, Kernel Programming. Our Founder has trained employees of almost all Top Companies in India such as VMware, Citrix, Oracle, Motorola, Ericsson, Aricent, HP, Intuit, Microsoft, Cisco, SAP Labs, Siemens, Symantec, Redhat, Chelsio, Cavium, ST-Micro, Samsung, LG-Soft, Wipro, TCS, HCL, IBM, Accenture, HSBC, Mphasis, Tata-Elxsi, Tata VSNL, Mindtree, Cognizant and Startups.

Best Trainings

SAN I - Technology
SAN II - Admin
Linux Fundamentals
Advanced C Training
Linux-C Debugging
System Programming
Network Programming
Linux Threads
Kernel Programming
Kernel Debugging
Linux Device Drivers

Best Reference Books

Computer Science Books
Algorithm & Programming Books
Electronics Engineering Books
Electrical Engineering Books
Chemical Engineering Books
Civil Engineering Books
Mechanical Engineering Books
Industrial Engineering Books
Instrumentation Engg Books
Metallurgical Engineering Books
All Stream Best Books

Questions and Answers

1000 C Questions & Answers
1000 C++ Questions & Answers
1000 C# Questions & Answers
1000 Java Questions & Answers
1000 Linux Questions & Answers
1000 Python Questions
1000 PHP Questions & Answers
1000 Hadoop Questions
Cloud Computing Questions
Computer Science Questions
All Stream Questions & Answers

India Internships

Computer Science Internships
Instrumentation Internships
Electronics Internships
Electrical Internships
Mechanical Internships
Industrial Internships
Systems Internships
Chemical Internships
Civil Internships
IT Internships
All Stream Internships

About Sanfoundry

About Us
Copyright
Terms
Privacy Policy
Jobs
Bangalore Training
Online Training
Developers Track
Mentoring Sessions
Contact Us
Sitemap
© 2011 Sanfoundry. All Rights Reserved.