Java Program to Implement Max Heap

«
»
This Java program is to implement max heap. A Heap data structure is a Tree based data structure that satisfies the HEAP Property “If A is a parent node of B then key(A) is ordered with respect to key(B) with the same ordering applying across the heap.”
So in a Min Heap this property will be “If A is a parent node of B then key(A) is less than key(B) with the same ordering applying across the heap.” and in a max heap the key(A) will be greater than Key(B).

Here is the source code of the Java program to implement max heap. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.

  1. public class MaxHeap
  2. {
  3.     private int[] Heap;
  4.     private int size;
  5.     private int maxsize;
  6.  
  7.     private static final int FRONT = 1;
  8.  
  9.     public MaxHeap(int maxsize)
  10.     {
  11.         this.maxsize = maxsize;
  12.         this.size = 0;
  13.         Heap = new int[this.maxsize + 1];
  14.         Heap[0] = Integer.MAX_VALUE;
  15.     }
  16.  
  17.     private int parent(int pos)
  18.     {
  19.         return pos / 2;
  20.     }
  21.  
  22.     private int leftChild(int pos)
  23.     {
  24.         return (2 * pos);
  25.     }
  26.  
  27.     private int rightChild(int pos)
  28.     {
  29.         return (2 * pos) + 1;
  30.     }
  31.  
  32.     private boolean isLeaf(int pos)
  33.     {
  34.         if (pos >=  (size / 2)  &&  pos <= size)
  35.         {
  36.             return true;
  37.         }
  38.         return false;
  39.     }
  40.  
  41.     private void swap(int fpos,int spos)
  42.     {
  43.         int tmp;
  44.         tmp = Heap[fpos];
  45.         Heap[fpos] = Heap[spos];
  46.         Heap[spos] = tmp;
  47.     }
  48.  
  49.     private void maxHeapify(int pos)
  50.     {
  51.         if (!isLeaf(pos))
  52.         { 
  53.             if ( Heap[pos] < Heap[leftChild(pos)]  || Heap[pos] < Heap[rightChild(pos)])
  54.             {
  55.                 if (Heap[leftChild(pos)] > Heap[rightChild(pos)])
  56.                 {
  57.                     swap(pos, leftChild(pos));
  58.                     maxHeapify(leftChild(pos));
  59.                 }else
  60.                 {
  61.                     swap(pos, rightChild(pos));
  62.                     maxHeapify(rightChild(pos));
  63.                 }
  64.             }
  65.         }
  66.     }
  67.  
  68.     public void insert(int element)
  69.     {
  70.         Heap[++size] = element;
  71.         int current = size;
  72.  
  73.         while(Heap[current] > Heap[parent(current)])
  74.         {
  75.             swap(current,parent(current));
  76.             current = parent(current);
  77.         }	
  78.     }
  79.  
  80.     public void print()
  81.     {
  82.         for (int i = 1; i <= size / 2; i++ )
  83.         {
  84.             System.out.print(" PARENT : " + Heap[i] + " LEFT CHILD : " + Heap[2*i]
  85.                   + " RIGHT CHILD :" + Heap[2 * i  + 1]);
  86.             System.out.println();
  87.         }
  88.     }
  89.  
  90.     public void maxHeap()
  91.     {
  92.         for (int pos = (size / 2); pos >= 1; pos--)
  93.         {
  94.             maxHeapify(pos);
  95.         }
  96.     }
  97.  
  98.     public int remove()
  99.     {
  100.         int popped = Heap[FRONT];
  101.         Heap[FRONT] = Heap[size--]; 
  102.         maxHeapify(FRONT);
  103.         return popped;
  104.     }
  105.  
  106.     public static void main(String...arg)
  107.     {
  108.         System.out.println("The Max Heap is ");
  109.         MaxHeap maxHeap = new MaxHeap(15);
  110.         maxHeap.insert(5);
  111.         maxHeap.insert(3);
  112.         maxHeap.insert(17);
  113.         maxHeap.insert(10);
  114.         maxHeap.insert(84);
  115.         maxHeap.insert(19);
  116.         maxHeap.insert(6);
  117.         maxHeap.insert(22);
  118.         maxHeap.insert(9);
  119.         maxHeap.maxHeap();
  120.  
  121.         maxHeap.print();
  122.         System.out.println("The max val is " + maxHeap.remove());
  123.     }
  124. }


advertisement
$javac MaxHeap.java
$java MaxHeap
The Max Heap is 
 PARENT : 84 LEFT CHILD : 22 RIGHT CHILD :19
 PARENT : 22 LEFT CHILD : 17 RIGHT CHILD :10
 PARENT : 19 LEFT CHILD : 5 RIGHT CHILD :6
 PARENT : 17 LEFT CHILD : 3 RIGHT CHILD :9
The max val is 84

Sanfoundry Global Education & Learning Series – 1000 Java Programs.

advertisement
advertisement
If you wish to look at all Java Programming examples, go to Java Programs.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & technical discussions at Telegram SanfoundryClasses.