Java Program to Find Basis and Dimension of a Matrix

«
»
This is the java program to find whether the vectors entered by users form the basis for the given dimension. The result for the same can be obtained by checking whether the determinant of the matrix formed by vectors is zero or not. If the determinant is non zero its forms the basis for the given dimension, not otherwise.

Here is the source code of the Java Program to Find Basis and Dimension of a Matrix. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

  1. //This is a sample program to find the basis and dimension of a vectors
  2. import java.util.Scanner;
  3.  
  4. public class Basis_Dimension_Matrix 
  5. {
  6.     public static double determinant(double A[][],int N)
  7.     {
  8.         double det=0;
  9.         if(N == 1)
  10.         {
  11.             det = A[0][0];
  12.         }
  13.         else if (N == 2)
  14.         {
  15.             det = A[0][0]*A[1][1] - A[1][0]*A[0][1];
  16.         }
  17.         else
  18.         {
  19.             det=0;
  20.             for(int j1=0;j1<N;j1++)
  21.             {
  22.                 double[][] m = new double[N-1][];
  23.                 for(int k=0;k<(N-1);k++)
  24.                 {
  25.                     m[k] = new double[N-1];
  26.                 }
  27.                 for(int i=1;i<N;i++)
  28.                 {
  29.                     int j2=0;
  30.                     for(int j=0;j<N;j++)
  31.                     {
  32.                         if(j == j1)
  33.                             continue;
  34.                         m[i-1][j2] = A[i][j];
  35.                         j2++;
  36.                     }
  37.                 }
  38.                 det += Math.pow(-1.0,1.0+j1+1.0)* A[0][j1] * determinant(m,N-1);
  39.             }
  40.         }
  41.         return det;
  42.     }
  43.  
  44.     public static void main(String args[])
  45.     {
  46.         Scanner sc = new Scanner(System.in);
  47.         System.out.println("Enter the number of vectors:");
  48.         int n = sc.nextInt();
  49.         double [][]mat = new double[n][n];
  50.         System.out.println("Enter the vectors one by one:");
  51.         for(int i=0; i<n; i++)
  52.         {
  53.             for(int j=0; j<n; j++)
  54.             {
  55.                 mat[j][i] = sc.nextDouble();
  56.             }
  57.         }
  58.         double det = determinant(mat, n);
  59.         if(det != 0)
  60.             System.out.println("The vectors froms the basis of R"+n+" as the determinant is non-zero");
  61.         else
  62.             System.out.println("The vectors doesn't form the basis of R"+n+" as the determinant is zero");
  63.         sc.close();
  64.     }
  65. }

Output:

advertisement
$ javac Basis_Dimension_Matrix.java
$ java Basis_Dimension_Matrix
Enter the number of vectors:
2
Enter the vectors one by one:
 1 1
-1 2 
The vectors froms the basis of R2 as the determinant is non-zero

Sanfoundry Global Education & Learning Series – 1000 Java Programs.

advertisement
advertisement

Here’s the list of Best Reference Books in Java Programming, Data Structures and Algorithms.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!
advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter