Finite Element Method Questions and Answers – Matrix Algebra

»

This set of Finite Element Method Multiple Choice Questions & Answers (MCQs) focuses on “Matrix Algebra”.

1. What is a matrix?
a) Group of elements
b) Array of elements
c) Group of columns and rows
d) Array of numbers
View Answer

Answer: b
Explanation: A matrix is an array of elements. The matrix A is denoted as [A]. An element located in the ith row and j th column is denoted as aij. A matrix is a collection of numbers arranged into a fixed number of rows and columns.
advertisement

2. Which of the following is a row vector?
a) \(\left[ \begin{array}{c c r } 0 & 1 & 2 \end{array}\right]\)
b) \(\left[ \begin{array}{c c r r} 0\\ 1 \\ 2\end{array}\right]\)
c) \(\left[ \begin{array}{c r} 0 & 1\\ 1 & 2\end{array}\right]\)
d) \(\left[ \begin{array}{c c r r} 0 & 3 & 6 \\ 1 & 8 & 4 \\ 0 & 5 & 7\end{array}\right]\)
View Answer

Answer: a
Explanation: A matrix of (1 x n) dimension is called row vector. A matrix of (n x1) dimension is called column vector.
For example
d=[ 1 2 3 4] is a row vector.
c = \(\left[ \begin{array}{c c r r} 0\\ 1 \\ 2\end{array}\right]\) is a column vector.

3. (A B C)T = _______
a) (C B A)T
b) BT CT AT
c) CT BT AT
d) AT BT CT
View Answer

Answer: c
Explanation: A matrix which is formed by turning all the rows of given matrix into columns and vice versa is called a transpose of matrix. The transpose of a product is given as the product of the transposes in the reverse order.
(A B C)T = CT BT AT.
advertisement
advertisement

4. The derivative of Ax with respect to variable xp is given by __________
a) \(\frac{d}{dx}\)(A x)=xp
b) \(\frac{d}{dx}\)(xp)=A x
c) ∫ A x=xp
d) ∫xp=Ax
View Answer

Answer: a
Explanation: Let A be an (n x n) matrix of constants and x = [x1 x2 x3…… xn]T be column vector of n variables. Then, (formula) derivative of A x with respect to variable xp is given by
\(\frac{d}{dx}\) (A x)=xp.

5. A symmetric matrix is called ____________, if all its Eigen values are strictly positive i.e., greater than zero.
a) Negative definite
b) Positive definite
c) Co- definite
d) Alternative definite
View Answer

Answer: b
Explanation: If all Eigen values of symmetric matrix are positive then the matrix is called as positive definite matrix. A symmetric matrix A of dimension (n x n) is positive definite if, for any non zero vector x = [x1 x2 x3…… xn]T. That is xT Ax > 0.
advertisement

6. A A-1=A-1A is a condition for ________
a) Singular matrix
b) Nonsingular matrix
c) Matrix inversion
d) Ad joint of matrix
View Answer

Answer: c
Explanation: If det A not equal to zero, then A has an inverse, denoted by A-1. The inverse satisfies the relation
A A-1 =A-1A= I

7. A positive definite symmetric matrix A can be decomposed into form A=LLT this decomposition is called ________
a) Cholesky
b) Rayleighs
c) Galerkins
d) Potential energy
View Answer

Answer: a
Explanation: L is the lower triangular matrix, and its transpose LT is upper triangular matrix. This is called Cholesky decomposition. It is a decomposition of a positive definite matrix into a product of lower triangular matrix and its conjugate transpose.
advertisement

8. Det(A-λI)=0 is a ________
a) Characteristic equation
b) Matrix equation
c) Inversion of matrix
d) Cholesky’s equation
View Answer

Answer: a
Explanation: A non zero solution will occurs when (A-ɅI) is a singular matrix or det(A-ɅI)=0 it is a characteristic equation. A characteristic equation is the equation which is solved to find the Eigen values, also called the characteristic polynomials.

9. \(\left[ \begin{array}{c c c r r r r}
2 & -1 & 6 & 3 \\ 0 & 14 & 8 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 3\end{array}\right]\) is a _____
a) Principle diagonal matrix
b) Upper triangular matrix
c) Lower triangular matrix
d) Singular matrix
View Answer

Answer: b
Explanation: An upper triangular or right triangular matrix is one whose elements below the principal diagonal elements are zero. The sum or product or inverse of any two upper triangular matrixes is an upper triangular matrix.
advertisement

10. A=\(\left[ \begin{array}{c c r r}
3 & 2 & 1 \\ 4 & 5 & -8 \\ 10 & 0 & 5\end{array}\right]\)Then det (A) =
a) 120
b) -80
c) -175
d) 0
View Answer

Answer: c
Explanation: det\(\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33} \end{bmatrix}\)

= a11(a22a33-a32a23)-a12(a21a33-a31a23)+a13(a21a32-a31a22)
= 3*((5*5)-(0*-8))-2*((10*-8)-(4*5))+1*((4*0)-(10*5))
=-175.

Sanfoundry Global Education & Learning Series – Finite Element Method.

To practice all areas of Finite Element Method, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter