Electromagnetic Theory Questions and Answers – Standing Waves and SWR

«
»

This set of Electromagnetic Theory Questions and Answers for Campus interviews focuses on “Standing Waves and SWR”.

1. Standing waves occurs due to
a) Impedance match
b) Impedance mismatch
c) Reflection
d) Transmission
View Answer

Answer: b
Explanation: Impedance mismatches result in standing waves along the transmission line. It shows the variation of the wave amplitudes due to mismatching.
advertisement

2. Standing wave ratio is defined as the
a) Ratio of voltage maxima to voltage minima
b) Ratio of current maxima to current minima
c) Product of voltage maxima and voltage minima
d) Product of current maxima and current minima
View Answer

Answer: a
Explanation: SWR is defined as the ratio of the partial standing wave’s amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line. It is given by S = VMAX/VMIN.

3. Given that the reflection coefficient is 0.6. Find the SWR.
a) 2
b) 4
c) 6
d) 8
View Answer

Answer: b
Explanation: The relation between reflection coefficient and SWR is given by S = 1 + R/1 – R. On substituting for R = 0.6, we get S = 1 + 0.6/1 – 0.6 = 1.6/0.4 = 4.
Note: Join free Sanfoundry classes at Telegram or Youtube
advertisement
advertisement

4. The maxima and minima voltage of the standing wave are 6 and 2 respectively. The standing wave ratio is
a) 2
b) 3
c) 1/2
d) 4
View Answer

Answer: b
Explanation: The ratio of voltage maxima to voltage minima is given by the standing wave ratio SWR. Thus S = VMAX/VMIN. On substituting the given data, we get S = 6/2 = 3.

5. Find the standing wave ratio, when a load impedance of 250 ohm is connected to a 75 ohm line.
a) 0.3
b) 75
c) 250
d) 3.33
View Answer

Answer: d
Explanation: The standing wave ratio is the ratio of the load impedance to the characteristic impedance. Thus S = ZL/Zo. On substituting for ZL = 250 and Zo = 75, we get S = 250/75 = 3.33.
advertisement

6. Find the reflection coefficient of the wave with SWR of 3.5.
a) 0.55
b) 0.23
c) 0.48
d) 0.68
View Answer

Answer: a
Explanation: The reflection coefficient in terms of the SWR is given by R = S – 1/S + 1. On substituting for S = 3.5, we get 3.5 – 1/3.5 + 1 = 0.55.

7. The range of the standing wave ratio is
a) 0 < S < 1
b) -1 < S < 1
c) 1 < S < ∞
d) 0 < S < ∞
View Answer

Answer: c
Explanation: The standing wave ratio is given by S = 1 – R/1 + R. Thus the minimum value of S is 1. It can extend upto infinity for long lines. Thus the range is 1 < S < ∞.
advertisement

8. For matched line, the standing wave ratio will be
a) 0
b) ∞
c) -1
d) 1
View Answer

Answer: d
Explanation: In a matched line, maximum transmission occurs. The reflection will be zero. The standing wave ratio S = 1 – R/1 + R. For R = 0, the SWR is unity for matched line.

9. The maximum impedance of a 50 ohm transmission line with SWR of 3 is
a) 50/3
b) 3/50
c) 150
d) 450
View Answer

Answer: c
Explanation: The maximum impedance is given by the product of the characteristic impedance and the SWR. Thus Zmax = S Zo. On substituting for S = 3 and Zo = 50, we get ZMAX = 3 X 50 = 150 units.
advertisement

10. The minimum impedance of a 75 ohm transmission line with a SWR of 2.5 is
a) 100
b) 50
c) 25
d) 30
View Answer

Answer: d
Explanation: The minimum impedance in terms of SWR is given by ZMIN = Zo/S. Substituting the given data for S = 2.5 and Zo = 75, we get Zmin = 75/2.5 = 30.

11. The standing wave ratio of short circuited and open circuited lines will be
a) 0
b) 1
c) -1
d) ∞
View Answer

Answer: d
Explanation: The transmission line will reflect high power when it is short or circuited. This will lead to high reflection coefficient. Thus the standing wave ratio will be infinity for these extreme cases.

12. The current reflection coefficient of a line with voltage reflection coefficient of 0.65 is given by
a) 0
b) 0.65
c) -0.65
d) 0.35
View Answer

Answer: c
Explanation: The current reflection coefficient at any point on the line is the negative of the voltage reflection coefficient at that point, i.e, -R. Given that the voltage reflection coefficient is 0.65, thus the current reflection coefficient is -0.65.

Sanfoundry Global Education & Learning Series – Electromagnetic Theory.
To practice all areas of Electromagnetic Theory for Campus Interviews, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & technical discussions at Telegram SanfoundryClasses.