This is a C++ program to implement the binary counting method to generate subsets of a set.
1. This algorithm print all the possible combination of each length from the given array using binary counting method.
2. The time complexity of this algorithm is O(n*(2^n)).
1. This algorithm takes the input of ‘n’ data element and prints all possible combination.
2. For that, it generates n bit binary number from 0 to 2^n.
3. For each number, it prints an unique combination.
4. Exit.
C++ Program to implement the binary counting method to generate subsets of a set.
This program is successfully run on Dev-C++ using TDM-GCC 4.9.2 MinGW compiler on a Windows system.
#include<iostream> #include<math.h> using namespace std; // A function to print array element according to the code in the argument list. void print(char code[], int arr[], int n) { int i; cout<<"\t{ "; for(i = 0; i < n; i++) { // Print if the corresponding value is '1'. if(code[i] == '1') cout<<arr[i]<<" "; } cout<<"}\n"; } // A function to generate subset by binary counting. int BinaryCounting(int arr[], int n) { int r, i, l; char binary[] = "0000"; r = pow(2, n); for(i = 0; i < r; i++) { print(binary, arr, n); l=n-1; // Incrementing the binary value with each iteration. h: if(binary[l] == '0') binary[l] = '1'; else { binary[l] = '0'; l--; goto h; } } } int main() { int i, n; cout<<"\nEnter the number of element array have: "; cin>>n; int arr[n]; cout<<"\n"; // Take the input of the array. for(i = 0; i < n; i++) { cout<<"Enter "<<i+1<<" element: "; cin>>arr[i]; } // Print the subset using binary counting method. cout<<"\nThe subset in the binary counting method: \n"; BinaryCounting(arr, n); return 0; }
1. Take the input of an array of ‘n’ data element.
2. Call BinaryCounting() function with data array and n in the argument list.
3. Inside BinaryCounting(), Calculate the total subset as ‘r=pow(2,n)’.
4. Generate numbers from 0 to r-1 in binary.
5. For each binary string of n character, call print().
6. Inside print(), print the element of the array if the binary string has ‘1’ at the same index of the array element.
7. Return to main.
8. Exit.
Case 1: Enter the number of element array have: 4 Enter 1 element: 1 Enter 2 element: 2 Enter 3 element: 3 Enter 4 element: 4 The subset in the gray code order: { } { 4 } { 3 4 } { 3 } { 2 3 } { 2 3 4 } { 2 4 } { 2 } { 1 2 } { 1 2 4 } { 1 2 3 4 } { 1 2 3 } { 1 3 } { 1 3 4 } { 1 4 } { 1 } Case 2: Enter the number of element array have: 5 Enter 1 element: 5 Enter 2 element: 4 Enter 3 element: 3 Enter 4 element: 2 Enter 5 element: 1 The subset in the gray code order: { } { 1 } { 2 1 } { 2 } { 3 2 } { 3 2 1 } { 3 1 } { 3 } { 4 3 } { 4 3 1 } { 4 3 2 1 } { 4 3 2 } { 4 2 } { 4 2 1 } { 4 1 } { 4 } { 5 4 } { 5 4 1 } { 5 4 2 1 } { 5 4 2 } { 5 4 3 2 } { 5 4 3 2 1 } { 5 4 3 1 } { 5 4 3 } { 5 3 } { 5 3 1 } { 5 3 2 1 } { 5 3 2 } { 5 2 } { 5 2 1 } { 5 1 } { 5 }
Sanfoundry Global Education & Learning Series – C++ Algorithms.
To practice all C++ Algorithms, here is complete set of 1000 C++ Algorithms.
- Check Programming Books
- Apply for Computer Science Internship
- Check Computer Science Books
- Check C++ Books
- Practice Computer Science MCQs