This is a java program In graph theory, a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph. A graph that is itself connected has exactly one connected component, consisting of the whole graph.

Here is the source code of the Java Program to Find the Connected Components of an UnDirected Graph. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

`// Sample program to find connected components of undirected graph`

package com.sanfoundry.graph;

import java.util.LinkedList;

import java.util.Queue;

import java.util.Scanner;

`class CCGraph`

`{`

static final int MAXV = 100;

static final int MAXDEGREE = 50;

public int edges[][] = new int[MAXV + 1][MAXDEGREE];

public int degree[] = new int[MAXV + 1];

public int nvertices;

public int nedges;

CCGraph()

`{`

nvertices = nedges = 0;

for (int i = 1; i <= MAXV; i++)

degree[i] = 0;

`}`

void read_CCGraph(boolean directed)

`{`

int x, y;

Scanner sc = new Scanner(System.in);

System.out.println("Enter the number of vertices: ");

nvertices = sc.nextInt();

System.out.println("Enter the number of edges: ");

int m = sc.nextInt();

System.out.println("Enter the edges: <from> <to>");

for (int i = 1; i <= m; i++)

`{`

x = sc.nextInt();

y = sc.nextInt();

insert_edge(x, y, directed);

`}`

sc.close();

`}`

void insert_edge(int x, int y, boolean directed)

`{`

if (degree[x] > MAXDEGREE)

System.out.printf(

"Warning: insertion (%d, %d) exceeds max degree\n", x, y);

edges[x][degree[x]] = y;

degree[x]++;

if (!directed)

insert_edge(y, x, true);

`else`

`nedges++;`

`}`

void print_CCGraph()

`{`

for (int i = 1; i <= nvertices; i++)

`{`

System.out.printf("%d: ", i);

for (int j = degree[i] - 1; j >= 0; j--)

System.out.printf(" %d", edges[i][j]);

System.out.printf("\n");

`}`

`}`

`}`

public class ConnectedComponents

`{`

static final int MAXV = 100;

static boolean processed[] = new boolean[MAXV];

static boolean discovered[] = new boolean[MAXV];

static int parent[] = new int[MAXV];

static void bfs(CCGraph g, int start)

`{`

Queue<Integer> q = new LinkedList<Integer>();

int i, v;

q.offer(start);

discovered[start] = true;

while (!q.isEmpty())

`{`

v = q.remove();

process_vertex(v);

processed[v] = true;

for (i = g.degree[v] - 1; i >= 0; i--)

`{`

if (!discovered[g.edges[v][i]])

`{`

q.offer(g.edges[v][i]);

discovered[g.edges[v][i]] = true;

parent[g.edges[v][i]] = v;

`}`

`}`

`}`

`}`

static void initialize_search(CCGraph g)

`{`

for (int i = 1; i <= g.nvertices; i++)

`{`

processed[i] = discovered[i] = false;

parent[i] = -1;

`}`

`}`

static void process_vertex(int v)

`{`

System.out.printf(" %d", v);

`}`

static void connected_components(CCGraph g)

`{`

int c;

initialize_search(g);

c = 0;

for (int i = 1; i <= g.nvertices; i++)

`{`

if (!discovered[i])

`{`

`c++;`

System.out.printf("Component %d:", c);

bfs(g, i);

System.out.printf("\n");

`}`

`}`

`}`

static public void main(String[] args)

`{`

CCGraph g = new CCGraph();

g.read_CCGraph(false);

g.print_CCGraph();

connected_components(g);

`}`

`}`

Output:

$ javac ConnectedComponents.java $ java ConnectedComponents Enter the number of vertices: 6 Enter the number of edges: 7 Enter the edges: <from> <to> 1 2 2 3 2 4 4 5 5 6 6 3 6 4 1: 2 2: 4 3 1 3: 6 2 4: 6 5 2 5: 6 4 6: 4 3 5 Component 1: 1 2 4 3 6 5 Enter the number of vertices: 6 Enter the number of edges: 7 Enter the edges: <from> <to> 1 2 1 4 1 3 2 3 5 6 6 5 4 3 1: 3 4 2 2: 3 1 3: 4 2 1 4: 3 1 5: 6 6 6: 5 5 Component 1: 1 3 4 2 Component 2: 5 6

**Sanfoundry Global Education & Learning Series – 1000 Java Programs.**

Here’s the list of Best Reference Books in Java Programming, Data Structures and Algorithms.