Engineering Mathematics Questions and Answers – Indeterminate Forms – 4

This set of Engineering Mathematics Multiple Choice Questions & Answers focuses on “Indeterminate Forms – 4”.

1. \(\lim_{x\rightarrow 0}⁡\frac{x^2 Sin(x) – e^{x^2}}{Cos⁡(x+π/2)}\) is
a) 0
b) 1
c) 2
d) 3
View Answer

Answer: a
Explanation:
\(\lim_{x\rightarrow 0}⁡\frac{x^2 Sin(x) – e^{x^2}}{Cos⁡(x+π/2)}\)=-1/0 (Indeterminate form)
By L’Hospital rule
\(\lim_{x\rightarrow 0}⁡\frac{x^2 Sin(x) – e^{x^2}}{Cos⁡(x+π/2)}\) \(=\lim_{x\rightarrow 0}⁡\frac{x^2 Cos(x) + 2xSin(x) – 2xe^{x^2}}{-Sin(x+π/2)}\)= 0

2. Value of limx → 0⁡(1+Sin(x))Cosec(x)
a) e
b) 0
c) 1
d) ∞
View Answer

Answer: a
Explanation: limx → 0⁡(1+Sin(x))Cosec(x)
Put sin(x) = t we get
limt → 0⁡(1+t)(1t)= e.

3. Value of limx → 0⁡(1+cot(x))sin(x)
a) e
b) e2
c) 1e
d) Can not be solved
View Answer

Answer: a
Explanation:
\(\Rightarrow \lim_{x\rightarrow 0}(1+cot(x))^{sin(x)}=\lim_{x\rightarrow 0}(1+\frac{cos(x)}{sin(x)})^{sin(x)}\)
\(=\lim_{x\rightarrow 0}(1+\frac{cos(x)}{sin(x)})^{\frac{sin(x)}{cos(x)}cos(x)}\)
\(\Rightarrow \lim_{x\rightarrow 0}\left [(1+\frac{cos(x)}{sin(x)})^{\frac{sin(x}{cos(x)}}\right ]^{cos(x)} \)
\(\Rightarrow\) Put cos(x)/sin(x)=t gives
\(\Rightarrow \lim_{t\rightarrow 0}\left [(1+t)^{\frac{1}{t}} \right ] ^{\lim_{x\rightarrow 0}cos(x)}\)
=>e1
=>e
advertisement
advertisement

4. \(\lim_{x\rightarrow\infty}f(x)^{g(x)}=\lim_{x\rightarrow\infty}f(x)^{\lim_{x\rightarrow\infty}g(x)}\)
a) True
b) False
View Answer

Answer: a
Explanation: It is a property of limits.

5. \(ln(lim_{x\rightarrow\infty}\frac{f(x)}{g(x)})=\lim_{x\rightarrow\infty}ln(f(x))+\lim_{x\rightarrow\infty}ln(g(x))\)
a) True
b) False
View Answer

Answer: b
Explanation:
\(ln(lim_{x\rightarrow\infty}\frac{f(x)}{g(x)})=ln(\frac{\lim_{x\rightarrow\infty}f(x)}{\lim_{x\rightarrow\infty}g(x)})\)
\(\Rightarrow ln(\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}) = \lim_{x\rightarrow\infty}ln(f(x)) – \lim_{x\rightarrow\infty}ln(g(x))\)
Sanfoundry Certification Contest of the Month is Live. 100+ Subjects. Participate Now!

6. Evaluate limx → 1⁡[(xx – 1) / (xlog(x))].
a) ee
b) e
c) 1
d) e2
View Answer

Answer: c
Explanation: limx → 1⁡ [(xx – 1) / (xlog(x))] = (00)
By L hospital rule,
limx → 1⁡ [xx (1+xlog(x))/ (1+xlog(x))] = limx → 1⁡ [xx] = 1.

7. Find n for which \(\lim_{x\rightarrow 0}\frac{(cos(x)-1)(cos(x)-e^x)}{x^n}\), has non zero value.
a) >=1
b) >=2
c) <=2
d) ~2
View Answer

Answer:b
Explanation: \(\lim_{x\rightarrow 0}\frac{(cos(x)-1)(cos(x)-e^x)}{x^n}=(0/0)\)
By L’Hospital Rule two times we get
=>\(\lim_{x\rightarrow 0}\frac{sin(2x)+e^x(cos(x)+sin(x))}{n(n-1)x^{n-2}}\)
Hence, limit have non zero limit, if n ≠ 0 and (n-1) ≠ 0 and (n-2) >= 0 means n >= 2.
advertisement

8. Find the value of limx → 0⁡(Sin(2x))Tan2 (2x)?
a) e0.5
b) e-0.5
c) e-1
d) e
View Answer

Answer: b
Explanation: y=\(\lim_{x\rightarrow 0}(sin(2x))^{tan^2(2x)}\)
Taking log of both side
\(ln y=\lim_{x\rightarrow 0}\frac{ln(sin(2x))}{cot^2(2x)}(0/0)\)
By L’Hospital Rule
\(ln y=-\lim_{x\rightarrow 0}\frac{2cos(2x)}{sin(2x).4.cosec^2(2x)cot(2x)}=-0.5\lim_{x\rightarrow 0}sin^2(2x)\)=-0.5
=>y=e-0.5

9. Evaluate \(\lim_{x\rightarrow\infty}\left [\frac{x-1}{x-2} \right ]^x\).
a) 14
b) 13
c) 12
d) 1
View Answer

Answer: c
Explanation: \(y=\lim_{x\rightarrow\infty}\left [\frac{x-1}{x-2} \right ]^x\)
\(ln y=\lim_{x\rightarrow\infty}xln\left [\frac{x-1}{x-2} \right ]\)
=>\(\lim_{x\rightarrow\infty}\frac{\left [\frac{x-1}{x-2} \right ]}{\frac{1}{x}}\)
By putting 1=1/y, we get
=>\(\lim_{y\rightarrow 0}\frac{ln\left [\frac{x-1}{x-2} \right ]}{y}=[ln(1/2)]/0\) (i.e indeterminate)
Hence by applying L’Hospital rule
=>\(\lim_{y\rightarrow 0}\frac{ln\left [\frac{x-1}{x-2} \right ]}{y}=\lim_{y\rightarrow 0}\frac{\frac{2-y-1+y}{(2-y)^2}}{\frac{1-y}{2-y}}=\lim_{y\rightarrow 0}\frac{\frac{1}{2-y}}{\frac{1-y}{1}}=\lim_{y\rightarrow 0}(\frac{1}{(2-y)(1-y)})\)=1/2
advertisement

Sanfoundry Global Education & Learning Series – Engineering Mathematics.

To practice all areas of Engineering Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.